Research article

Robust estimation for varying-coefficient partially linear measurement error model with auxiliary instrumental variables

  • Received: 01 March 2023 Revised: 31 March 2023 Accepted: 17 April 2023 Published: 29 May 2023
  • MSC : 62G10, 62G05

  • We study the varying-coefficient partially linear model when some linear covariates are not observed, but their auxiliary instrumental variables are available. Combining the calibrated error-prone covariates and modal regression, we present a two-stage efficient estimation procedure, which is robust against outliers or heavy-tail error distributions. Asymptotic properties of the resulting estimators are established. Performance of our proposed estimation procedure is illustrated through some numerous simulations and a real example. And the results confirm that the proposed methods are satisfactory.

    Citation: Yanting Xiao, Wanying Dong. Robust estimation for varying-coefficient partially linear measurement error model with auxiliary instrumental variables[J]. AIMS Mathematics, 2023, 8(8): 18373-18391. doi: 10.3934/math.2023934

    Related Papers:

  • We study the varying-coefficient partially linear model when some linear covariates are not observed, but their auxiliary instrumental variables are available. Combining the calibrated error-prone covariates and modal regression, we present a two-stage efficient estimation procedure, which is robust against outliers or heavy-tail error distributions. Asymptotic properties of the resulting estimators are established. Performance of our proposed estimation procedure is illustrated through some numerous simulations and a real example. And the results confirm that the proposed methods are satisfactory.



    加载中


    [1] W. A. Fuller, Measurement error models, New York: Wiley, 1987.
    [2] J. H. You, G. M. Chen, Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model, J. Multivariate Anal., 97 (2006), 324–341. https://doi.org/10.1016/j.jmva.2005.03.002 doi: 10.1016/j.jmva.2005.03.002
    [3] X. L. Wang, G. R. Li, L. Lin, Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models, Metrika, 73 (2011), 171–185. https://doi.org/10.1007/s00184-009-0271-2 doi: 10.1007/s00184-009-0271-2
    [4] S. Y. Feng, L. G. Xue, Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition, Ann. Inst. Stat. Math., 66 (2014), 121–140. https://doi.org/10.1007/s10463-013-0407-z doi: 10.1007/s10463-013-0407-z
    [5] G. L. Fan, H. X. Xu, Z. S. Huang, Empirical likelihood for semivarying coefficient model with measurement error in the nonparametric part, ASTA Adv. Stat. Anal., 100 (2016), 21–41. https://doi.org/10.1007/s10182-015-0247-7 doi: 10.1007/s10182-015-0247-7
    [6] Y. Zhou, H. Liang, Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates, Ann. Statist., 37 (2009), 427–458. https://doi.org/10.1214/07-AOS561 doi: 10.1214/07-AOS561
    [7] P. X. Zhao, L. G. Xue, Instrumental variable-based empirical likelihood inferences for varying-coefficient models with error-prone covariates, J. Appl. Stat., 40 (2013), 380–396. https://doi.org/10.1080/02664763.2012.744810 doi: 10.1080/02664763.2012.744810
    [8] Y. Q. Xu, X. L. Li, G. M. Chen, Estimation and inference for varying-coefficient regression models with error-prone covariates, J. Syst. Sci. Complex., 27 (2014), 1263–1285. https://doi.org/10.1007/s11424-014-3014-z doi: 10.1007/s11424-014-3014-z
    [9] J. Zhang, X. G. Wang, Y. Yu, Y. J. Gai, Estimation and variable selection in partial linear single index models with error-prone linear covariates, Statistics, 48 (2014), 1048–1070. https://doi.org/10.1080/02331888.2013.800519 doi: 10.1080/02331888.2013.800519
    [10] Z. S. Huang, H. Y. Ding, Statistical estimation for partially linear error-in-variable models with error-prone covariates, Commun. Stat.-Simul. Comput., 46 (2017), 6559–6573. https://doi.org/10.1080/03610918.2016.1208233 doi: 10.1080/03610918.2016.1208233
    [11] Z. H. Sun, Y. F. Jiang, X. Ye, Improved statistical inference on semiparametric varying-coefficient partially linear measurement error model, J. Nonparametr. Stat., 31 (2019), 549–566. https://doi.org/10.1080/10485252.2019.1603383 doi: 10.1080/10485252.2019.1603383
    [12] W. X. Yao, B. G. Lindsay, R. Z. Li, Local modal regression, J. Nonparametr. Stat., 24 (2012), 647–663. https://doi.org/10.1080/10485252.2012.678848 doi: 10.1080/10485252.2012.678848
    [13] W. H. Zhao, R. Q. Zhang, J. C. Liu, Y. Z. Lv, Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression, Ann. Inst. Stat. Math., 66 (2014), 165–191. https://doi.org/10.1007/s10463-013-0410-4 doi: 10.1007/s10463-013-0410-4
    [14] H. Yang, J. Yang, A robust and efficient estimation and variable selection method for partially linear single-index models, J. Multivariate Anal., 129 (2014), 227–242. https://doi.org/10.1016/j.jmva.2014.04.024 doi: 10.1016/j.jmva.2014.04.024
    [15] H. Yang, J. Lv, C. H. Guo, Robust estimation and variable selection for varying-coefficient single-index models based on modal regression, Commun. Stat.-Theor. Meth., 45 (2016), 4048–4067. https://doi.org/10.1080/03610926.2014.915043 doi: 10.1080/03610926.2014.915043
    [16] J. Lv, H. Yang, C. H. Guo, Variable selection in partially linear additive models for modal regression, Commun. Stat.-Simul. Comput., 46 (2017), 5646–5665. https://doi.org/10.1080/03610918.2016.1171346 doi: 10.1080/03610918.2016.1171346
    [17] P. Yu, Z. Y. Zhu, J. H. Shi, X. K. Ai, Robust estimation for partial functional linear regression model based on modal regression, J. Syst. Sci. Complex., 33 (2022), 527–544. https://doi.org/10.1007/s11424-020-8217-x doi: 10.1007/s11424-020-8217-x
    [18] J. Fan, R. Gijbels, Local polynomial modelling and its applications, London: Chapman & Hall, 1996.
    [19] L. L. Schumaker, Spline function, New York: Wiley, 1981.
    [20] J. Li, S. Ray, B. G. Lindsay, A nonparametric statistical approach to clustering via mode identification, J. Mach. Learn. Res., 8 (2007), 1687–1723. https://doi.org/10.1007/s10846-007-9145-x doi: 10.1007/s10846-007-9145-x
    [21] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression, Ann. Statist., 32 (2004), 407–499. https://doi.org/10.1214/009053604000000067 doi: 10.1214/009053604000000067
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1261) PDF downloads(82) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog