We study the varying-coefficient partially linear model when some linear covariates are not observed, but their auxiliary instrumental variables are available. Combining the calibrated error-prone covariates and modal regression, we present a two-stage efficient estimation procedure, which is robust against outliers or heavy-tail error distributions. Asymptotic properties of the resulting estimators are established. Performance of our proposed estimation procedure is illustrated through some numerous simulations and a real example. And the results confirm that the proposed methods are satisfactory.
Citation: Yanting Xiao, Wanying Dong. Robust estimation for varying-coefficient partially linear measurement error model with auxiliary instrumental variables[J]. AIMS Mathematics, 2023, 8(8): 18373-18391. doi: 10.3934/math.2023934
We study the varying-coefficient partially linear model when some linear covariates are not observed, but their auxiliary instrumental variables are available. Combining the calibrated error-prone covariates and modal regression, we present a two-stage efficient estimation procedure, which is robust against outliers or heavy-tail error distributions. Asymptotic properties of the resulting estimators are established. Performance of our proposed estimation procedure is illustrated through some numerous simulations and a real example. And the results confirm that the proposed methods are satisfactory.
[1] | W. A. Fuller, Measurement error models, New York: Wiley, 1987. |
[2] | J. H. You, G. M. Chen, Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model, J. Multivariate Anal., 97 (2006), 324–341. https://doi.org/10.1016/j.jmva.2005.03.002 doi: 10.1016/j.jmva.2005.03.002 |
[3] | X. L. Wang, G. R. Li, L. Lin, Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models, Metrika, 73 (2011), 171–185. https://doi.org/10.1007/s00184-009-0271-2 doi: 10.1007/s00184-009-0271-2 |
[4] | S. Y. Feng, L. G. Xue, Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition, Ann. Inst. Stat. Math., 66 (2014), 121–140. https://doi.org/10.1007/s10463-013-0407-z doi: 10.1007/s10463-013-0407-z |
[5] | G. L. Fan, H. X. Xu, Z. S. Huang, Empirical likelihood for semivarying coefficient model with measurement error in the nonparametric part, ASTA Adv. Stat. Anal., 100 (2016), 21–41. https://doi.org/10.1007/s10182-015-0247-7 doi: 10.1007/s10182-015-0247-7 |
[6] | Y. Zhou, H. Liang, Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates, Ann. Statist., 37 (2009), 427–458. https://doi.org/10.1214/07-AOS561 doi: 10.1214/07-AOS561 |
[7] | P. X. Zhao, L. G. Xue, Instrumental variable-based empirical likelihood inferences for varying-coefficient models with error-prone covariates, J. Appl. Stat., 40 (2013), 380–396. https://doi.org/10.1080/02664763.2012.744810 doi: 10.1080/02664763.2012.744810 |
[8] | Y. Q. Xu, X. L. Li, G. M. Chen, Estimation and inference for varying-coefficient regression models with error-prone covariates, J. Syst. Sci. Complex., 27 (2014), 1263–1285. https://doi.org/10.1007/s11424-014-3014-z doi: 10.1007/s11424-014-3014-z |
[9] | J. Zhang, X. G. Wang, Y. Yu, Y. J. Gai, Estimation and variable selection in partial linear single index models with error-prone linear covariates, Statistics, 48 (2014), 1048–1070. https://doi.org/10.1080/02331888.2013.800519 doi: 10.1080/02331888.2013.800519 |
[10] | Z. S. Huang, H. Y. Ding, Statistical estimation for partially linear error-in-variable models with error-prone covariates, Commun. Stat.-Simul. Comput., 46 (2017), 6559–6573. https://doi.org/10.1080/03610918.2016.1208233 doi: 10.1080/03610918.2016.1208233 |
[11] | Z. H. Sun, Y. F. Jiang, X. Ye, Improved statistical inference on semiparametric varying-coefficient partially linear measurement error model, J. Nonparametr. Stat., 31 (2019), 549–566. https://doi.org/10.1080/10485252.2019.1603383 doi: 10.1080/10485252.2019.1603383 |
[12] | W. X. Yao, B. G. Lindsay, R. Z. Li, Local modal regression, J. Nonparametr. Stat., 24 (2012), 647–663. https://doi.org/10.1080/10485252.2012.678848 doi: 10.1080/10485252.2012.678848 |
[13] | W. H. Zhao, R. Q. Zhang, J. C. Liu, Y. Z. Lv, Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression, Ann. Inst. Stat. Math., 66 (2014), 165–191. https://doi.org/10.1007/s10463-013-0410-4 doi: 10.1007/s10463-013-0410-4 |
[14] | H. Yang, J. Yang, A robust and efficient estimation and variable selection method for partially linear single-index models, J. Multivariate Anal., 129 (2014), 227–242. https://doi.org/10.1016/j.jmva.2014.04.024 doi: 10.1016/j.jmva.2014.04.024 |
[15] | H. Yang, J. Lv, C. H. Guo, Robust estimation and variable selection for varying-coefficient single-index models based on modal regression, Commun. Stat.-Theor. Meth., 45 (2016), 4048–4067. https://doi.org/10.1080/03610926.2014.915043 doi: 10.1080/03610926.2014.915043 |
[16] | J. Lv, H. Yang, C. H. Guo, Variable selection in partially linear additive models for modal regression, Commun. Stat.-Simul. Comput., 46 (2017), 5646–5665. https://doi.org/10.1080/03610918.2016.1171346 doi: 10.1080/03610918.2016.1171346 |
[17] | P. Yu, Z. Y. Zhu, J. H. Shi, X. K. Ai, Robust estimation for partial functional linear regression model based on modal regression, J. Syst. Sci. Complex., 33 (2022), 527–544. https://doi.org/10.1007/s11424-020-8217-x doi: 10.1007/s11424-020-8217-x |
[18] | J. Fan, R. Gijbels, Local polynomial modelling and its applications, London: Chapman & Hall, 1996. |
[19] | L. L. Schumaker, Spline function, New York: Wiley, 1981. |
[20] | J. Li, S. Ray, B. G. Lindsay, A nonparametric statistical approach to clustering via mode identification, J. Mach. Learn. Res., 8 (2007), 1687–1723. https://doi.org/10.1007/s10846-007-9145-x doi: 10.1007/s10846-007-9145-x |
[21] | B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression, Ann. Statist., 32 (2004), 407–499. https://doi.org/10.1214/009053604000000067 doi: 10.1214/009053604000000067 |