Research article Special Issues

Non-parametric calibration estimation of distribution function under stratified random sampling

  • Received: 06 December 2024 Revised: 15 February 2025 Accepted: 20 February 2025 Published: 28 February 2025
  • MSC : 62A86, 62G07

  • We introduced an innovative kernel-based nonparametric estimator for the cumulative distribution function (CDF) in finite populations, addressing the critical need to evaluate the proportion of values in a target variable that are less than or equal to specific thresholds. By leveraging auxiliary information under a stratified random sampling (StRS) framework, the proposed methodology employs multiple calibration constraints with a chi-square distance measure to derive calibrated weights, enhancing estimation efficiency. The estimators incorporate key descriptive measures of auxiliary variable, including the CDF and coefficient of variation, and tackle the challenge of bandwidth selection using advanced techniques such as plug-in selectors and cross-validation approaches. Simulation studies using datasets on apple production in Turkey and wheat production in Pakistan were conducted to assess the performance of the proposed estimators.

    Citation: Abdullah Mohammed Alomair, Weineng Zhu, Usman Shahzad, Fawaz Khaled Alarfaj. Non-parametric calibration estimation of distribution function under stratified random sampling[J]. AIMS Mathematics, 2025, 10(2): 4457-4472. doi: 10.3934/math.2025205

    Related Papers:

  • We introduced an innovative kernel-based nonparametric estimator for the cumulative distribution function (CDF) in finite populations, addressing the critical need to evaluate the proportion of values in a target variable that are less than or equal to specific thresholds. By leveraging auxiliary information under a stratified random sampling (StRS) framework, the proposed methodology employs multiple calibration constraints with a chi-square distance measure to derive calibrated weights, enhancing estimation efficiency. The estimators incorporate key descriptive measures of auxiliary variable, including the CDF and coefficient of variation, and tackle the challenge of bandwidth selection using advanced techniques such as plug-in selectors and cross-validation approaches. Simulation studies using datasets on apple production in Turkey and wheat production in Pakistan were conducted to assess the performance of the proposed estimators.



    加载中


    [1] N. Koyuncu, Calibration estimator of population mean under stratified ranked set sampling design, Commun. Stat.-Theor. M., 47 (2018), 5845–5853. https://doi.org/10.1080/03610926.2017.1402051 doi: 10.1080/03610926.2017.1402051
    [2] M. Abid, S. Ahmed, M. Tahir, H. Z. Nazir, M. Riaz, Improved ratio estimators of variance based on robust measures, Sci. Iran., 26 (2019), 2484–2494. https://doi.org/10.24200/sci.2018.20604 doi: 10.24200/sci.2018.20604
    [3] F. Naz, T. Nawaz, T. Pang, M. Abid, Use of nonconventional dispersion measures to improve the efficiency of ratio-type estimators of variance in the presence of outliers, Symmetry, 12 (2020), 16. https://doi.org/10.3390/sym12010016 doi: 10.3390/sym12010016
    [4] T. Zaman, C. Kadilar, Exponential ratio and product type estimators of the mean in stratified two-phase sampling, AIMS Math., 6 (2021), 4265–4279. https://doi.org/10.3934/math.2021252 doi: 10.3934/math.2021252
    [5] W. G. Cochran, The estimation of the yields of cereal experiments by sampling for the ratio gain to total produce, J. Agr. Sci., 30 (1940), 262–275. https://doi.org/10.1017/S0021859600048012 doi: 10.1017/S0021859600048012
    [6] D. J. Watson, The estimation of leaf area in field crops, J. Agr. Sci., 27 (1937), 474–483. https://doi.org/10.1017/S002185960005173X doi: 10.1017/S002185960005173X
    [7] J.-C. Deville, C. E. Särndal, Calibration estimators in survey sampling, J. Amer. Stat. Assoc., 87 (1992), 376–382. https://doi.org/10.1080/01621459.1992.10475217 doi: 10.1080/01621459.1992.10475217
    [8] U. Shahzad, I. Ahmad, I. Almanjahie, N. H. Al-Noor, M. Hanif, A new class of L-moments based calibration variance estimators, CMC-Comput. Mater. Con., 66 (2021), 3013–3028. https://doi.org/10.32604/cmc.2021.014101 doi: 10.32604/cmc.2021.014101
    [9] U. Shahzad, I. Ahmad, I. Almanjahie, N. H. Al-Noor, L-moments based calibrated variance estimators using double stratified sampling, CMC-Comput. Mater. Con., 68 (2021), 3411–3430. https://doi.org/10.32604/cmc.2021.017046
    [10] R. L. Chambers, R. Dunstan, Estimating distribution functions from survey data, Biometrika, 73 (1986), 597–604. https://doi.org/10.1093/biomet/73.3.597 doi: 10.1093/biomet/73.3.597
    [11] J. N. K. Rao, J. G. Kovar, H. J. Mantel, On estimating distribution functions and quantiles from survey data using auxiliary information, Biometrika, 77 (1990), 365–375. https://doi.org/10.1093/biomet/77.2.365 doi: 10.1093/biomet/77.2.365
    [12] J. N. K. Rao, Estimating totals and distribution functions using auxiliary information at the estimation stage, J. Off. Stat., 10 (1994), 153–165.
    [13] A. Y. C. Kuk, A kernel method for estimating finite population distribution functions using auxiliary information, Biometrika, 80 (1993), 385–392. https://doi.org/10.1093/biomet/80.2.385 doi: 10.1093/biomet/80.2.385
    [14] M. S. Ahmed, W. Abu-Dayyeh, Estimation of finite-population distribution function using multivariate auxiliary information, Statistics in Transition, 5 (2001), 501–507.
    [15] D. S. Tracy, S. Singh, R. Arnab, Note on calibration in stratified and double sampling, Surv. Methodol., 29 (2003), 99–104.
    [16] N. Koyuncu, C. Kadilar, Calibration weighting in stratified random sampling, Commun. Stat.-Simul. C., 45 (2016), 2267–2275. https://doi.org/10.1080/03610918.2014.901354 doi: 10.1080/03610918.2014.901354
    [17] N. Altman, C. Léger, Bandwidth selection for kernel distribution function estimation, J. Stat. Plan. Infer., 46 (1995), 195–214. https://doi.org/10.1016/0378-3758(94)00102-2 doi: 10.1016/0378-3758(94)00102-2
    [18] A. M. Polansky, E. R. Baker, Multistage plug-in bandwidth selection for kernel distribution function estimates, J. Stat. Comput. Sim., 65 (2000), 63–80. https://doi.org/10.1080/00949650008811990 doi: 10.1080/00949650008811990
    [19] A. W. Bowman, P. Hall, T. Prvan, Cross-validation for the smoothing of distribution functions, Biometrika, 85 (1998), 799–808. https://doi.org/10.1093/biomet/85.4.799 doi: 10.1093/biomet/85.4.799
    [20] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist., 33 (1962), 1065–1076. https://doi.org/10.1214/aoms/1177704472 doi: 10.1214/aoms/1177704472
    [21] E. A. Nadaraya, On estimating regression, Theor. Probab. Appl., 9 (1964), 141–142. https://doi.org/10.1137/1109020
    [22] R.-D. Reiss, Nonparametric estimation of smooth distribution functions, Scand. J. Stat., 8 (1981), 116–119.
    [23] P. D. Hill, Kernel estimation of a distribution function, Commun. Stat.-Theor. M., 14 (1985), 605–620. https://doi.org/10.1080/03610928508828937 doi: 10.1080/03610928508828937
    [24] M. C. Jones, J. S. Marron, S. J. Sheather, A brief survey of bandwidth selection for density estimation, J. Amer. Stat. Assoc., 91 (1996), 401–407. https://doi.org/10.1080/01621459.1996.10476701 doi: 10.1080/01621459.1996.10476701
    [25] A. Q. del Rio, Comparison of bandwidth selectors in nonparametric regression under dependence, Comput. Stat. Data Anal., 21 (1996), 563–580. https://doi.org/10.1016/0167-9473(95)00028-3
    [26] P. Sarda, Smoothing parameter selection for smooth distribution function, J. Stat. Plan. Infer., 35 (1993), 65–75. https://doi.org/10.1016/0378-3758(93)90068-H doi: 10.1016/0378-3758(93)90068-H
    [27] B. W. Silverman, Density estimation for statistics and data analysis, New York: Chapman and Hall, 1998. https://doi.org/10.1201/9781315140919
    [28] P. Hall, J. S. Marron, Estimation of integrated squared density derivatives, Stat. Probabil. Lett., 6 (1987), 109–115. https://doi.org/10.1016/0167-7152(87)90083-6 doi: 10.1016/0167-7152(87)90083-6
    [29] M. C. Jones, S. J. Sheather, Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives, Stat. Probabil. Lett., 11 (1991), 511–514. https://doi.org/10.1016/0167-7152(91)90116-9 doi: 10.1016/0167-7152(91)90116-9
    [30] N. Koyuncu, C. Kadilar, Ratio and product estimators in stratified random sampling, J. Stat. Plan. Infer., 139 (2009), 2552–2558. https://doi.org/10.1016/j.jspi.2008.11.009 doi: 10.1016/j.jspi.2008.11.009
    [31] T. H. Ali, Modification of the adaptive Nadaraya-Watson kernel method for nonparametric regression (simulation study), Commun. Stat.-Simul. C., 51 (2022), 391–403. https://doi.org/10.1080/03610918.2019.1652319 doi: 10.1080/03610918.2019.1652319
    [32] T. H. Ali, H. A. A. M. Hayawi, D. S. I. Botani, Estimation of the bandwidth parameter in Nadaraya-Watson kernel non-parametric regression based on universal threshold level, Commun. Stat.-Simul. C., 52 (2023), 1476–1489. https://doi.org/10.1080/03610918.2021.1884719 doi: 10.1080/03610918.2021.1884719
    [33] U. Shahzad, I. Ahmad, I. M. Almanjahie, N. H. Al-Noor, M. Hanif, Adaptive Nadaraya-Watson kernel regression estimators utilizing some non-traditional and robust measures: a numerical application of British food data, Hacet. J. Math. Stat., 52 (2023), 1425–1437. https://doi.org/10.15672/hujms.1167617 doi: 10.15672/hujms.1167617
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(42) PDF downloads(9) Cited by(0)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog