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1. Introduction 

In the field of sampling surveys, the efficiency of estimators can be boosted for unknown 

population parameters by appropriately using auxiliary information. There are many estimators for 

estimating population parameters such as the mean, quantile, sum, distribution function, and median, 

which exist and require information regarding auxiliary variables in addition to the study variable 

parameters. Using auxiliary information in sampling theory is very beneficial as it enhances the 

efficiency of the estimator. Also, it is very prevalent and a regular practice in the field of sampling 

surveys as it plays a productive role in the development of sampling schemes. 

There are many examples from daily life related to the linear relationship between the auxiliary 

variable and the study variable. For example, mass and weight are linearly related. Weight increases 

with mass. Similarly, there is a linear relationship between demand and the price of objects. The 

price also increases as demand increases. In such situations, auxiliary variables can be used to 

improve the estimation results of the study variables. Auxiliary information can be acquired in 

various forms from different sources, such as census data, outcomes of data (from previous 

experiments), and expert opinions. This information can be utilized in different methods. For 

instance, distributions of parameters of interest such as age, gender, and family income can be 

acquired using census data. Auxiliary information can be adequately used in the estimation phase, the 

design phase, or both stages. For further discussion on auxiliary information, interested readers may 

refer to Koyuncu [1], Abid et al. [2], Naz et al. [3], and Zaman and Kadilar [4]. 

When we use auxiliary information to estimate population parameters, it enhances the efficiency 

of the results. These estimates are based on traditional ratio, regression, and calibration methods. 

There are many studies available in the literature that encompass these methods for estimating 

population parameters using auxiliary information. For instance, Cochran [5] defined the ratio 

method of estimation, Watson [6] suggested the traditional regression estimation method, Deville and 

Sarndal [7] defined calibration-type estimators for parameter estimation, and Shahzad et al. [8,9] 

expanded on this work by introducing linear moments with calibration technique. These estimators 

are generally considered a reference to assess the efficiency of the proposed estimators by different 

authors. However, most of these researchers focus on estimating the mean and variance. In this paper, 

our focus is on estimating the CDF. 

The issue arises regarding the CDF for the estimation of finite populations, especially in cases 

where the evaluation of the proportion of the data is based on the study variable, and the proportion 

can be more or less compared to a specific value. In such situations, it becomes necessary to estimate 

the CDF. To understand this concept, let us consider an example where some analysts suggest that 

the proportion of deaths due to COVID-19 is 2% or more of the total reported cases worldwide. 

Researchers have estimated the CDF using one or more auxiliary variables. For the estimation of 

CDF, Chambers and Dunstan [10] introduced an estimator that requires information from both the 

study and auxiliary variables for CDF estimation. Similarly, for CDF estimation using traditional 

sampling designs, Rao et al. [11] and [12] suggested ratio-type and regression type estimators. By 

utilizing auxiliary information for the estimation of CDF under the kernel method, Kuk [13] 

proposed an estimator. By using data with multiple auxiliary variables, Ahmed and Abu-Dayyeh [14] 

introduced the idea of estimating the CDF. In this paper, we estimate kernel-based CDF using 

multiple calibration constraints. 

Calibration is a technique that is used to adjust the original weights. By following this technique, 

https://www.wordhippo.com/what-is/another-word-for/assess.html
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the original weights 𝑊ℎ are replaced by calibration weights 𝑉ℎ and adjusted. This advancement 

has greatly improved the efficiency of the CDF estimate. These adjusted weights are known as 

calibration weights. In this technique, the original weights 𝑊ℎ are upgraded using the chi-square 

and some other appropriate loss functions. However, chi-square is the most suitable loss function. 

This function depends on the appropriate calibration constraints that are associated with auxiliary 

variables. The idea of calibrations based on the estimation of parameters was initiated by Deville and 

Sarndal [7]. This concept was further modified by Tracy et al. [15] with the use of double stratified 

random sampling scheme. The extension of the idea was made by Koyuncu and Kadilar [16] by 

introducing some novel constraints by comparing the calibrated and original weights. Koyuncu [1] 

extended the idea by converting it into a rank set sampling technique for parameter estimation. 

Shahzad et al. [8,9] used the descriptive of linear moments (L-moments, TL moments) such as 

L-scale, L-location, and L-CV. 

In this study, we were motivated to propose an estimator for the estimation of CDF using the 

multiple constraints-based calibration technique described above. It is worthy to note that we are 

using a kernel based nonparametric CDF function for the purposes of this article. From the literature 

mentioned above, we also know that the use of auxiliary information at the estimation stage provides 

better estimates. Therefore, keeping this fact in mind, calibration constraints on the basis of 

kernel-based nonparametric CDF, along with some traditional measures of descriptive statistics, 

namely the mean and coefficient of variation of the auxiliary variable, can provide better estimates. 

Based on this literature and following a calibration-based technique, an estimator for the population 

CDF of a study variable is proposed in this article using different bandwidths. The best estimator of 

the class is identified in light of different bandwidth selectors, and its efficiency is compared based 

on a number of simulation trials. 

The remaining article is arranged in the following manner. Section 2 preliminarily consists of a 

kernel-based cumulative distribution function (CDF). Different bandwidth selection methods are also 

discussed in this section, such as Altman and Leger [17], Polansky and Baker [18] plug-in estimates, 

and cross validation bandwidth of Bowman et al. [19]. In section 3, empirical studies are conducted 

to determine the performance of the estimator and discuss the results. Our conclusion of this study is 

presented in section 4. 

2. Kernel based CDF with different bandwidth selectors 

2.1. Nonparametric CDF estimator 

Suppose a data set of continuous random variable 𝑋, that is (𝑥1, 𝑥2, 𝑥3, … . . 𝑥𝑛) having density 

𝑓 and distribution function 𝐹. The empirical distribution function has a natural estimator that can be 

expressed at any point 𝑥 in the following way, 

𝐹𝑛(𝑦) = 𝑛−1 ∑ 𝐼(−∞,𝑦](𝑦𝑗)𝑛
𝑗=1         (1) 

The Rosenblatt-Parzen kernel estimator is also a renowned estimator of the density function and 

can be expressed as 𝑓𝜆(𝑦) = 𝑛−1 ∑ 𝑘𝜆(𝑦 − 𝑦𝑗)𝑛
𝑗=1 , as indicated in Parzen [20]. However, 𝑘𝜆(𝑢) =

𝜆−1𝑘(𝑢
𝜆⁄ ) . In this expression, 𝑘  and 𝜆  signify the kernel and bandwidth of the function, 

https://www.wordhippo.com/what-is/another-word-for/renowned.html
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respectively. 

By using the connection between density and distribution function, the kernel estimator can be 

written as 

𝐹́𝜆(𝑦) = ∫ 𝑓𝜆(𝑡)𝑑𝑡
𝑦

−∞
                 (2) 

It can also be expressed in the form of kernel estimator of the density function as 

𝐹̂𝜆(𝑦) = 𝑛−1 ∑ 𝐻𝑛
𝑗=1 (

𝑦−𝑦𝑗

𝜆
)        (3) 

Therefore, 𝐻(𝑦) = ∫ 𝑘(𝑡)𝑑𝑡
𝑦

−∞
. Nadraya [21], Reiss [22], and Peter D. [23] have also given 

some theoretical properties for the estimator 𝐹́𝜆. 

In accordance with Eq (3), the kernel estimator depends on the kernel function 𝑘  and 

smoothing parameter 𝜆 (bandwidth). It is not very problematic to select 𝑘, as functions can be used 

that give appealing results. However, the selection of bandwidth 𝜆 is more complicated. Choosing a 

small bandwidth may lead to an under-smoothed estimator with high variability. Therefore, selecting 

a large bandwidth results in low variability, making the estimator smoother and achieving the desired 

results. 

The issue of bandwidth selection has been discussed in various methods and techniques, 

especially in regression and density estimation, with contributions made by Jones et al. [24] and del 

Rio [25]. Two well-known approaches in distribution estimation include the ‘plug-in bandwidth 

selection method’ by Altman and Leger [17] and Polanski and Baker [18], and ‘least squares cross 

validation method’ by Sarda [26]. Altman and Leger [17], however, noted that the latter demands a 

large sample size for valid results. Among all the cross-validation methods ever suggested, 

Bowman et al.’s [19] modified cross-validation is best suited for real-world datasets. 

There are many applications of distribution function estimation in different fields e.g., 

hydrology, natural sciences, agricultural sciences, biological science, environmental sciences, and 

seismology. Thus, using nonparametric techniques, diverse methodologies have emerged that are 

directly associated with the risk term. Scientists have keen interest in knowing about the risk of a 

high magnitude earthquake, probability of the occurrence of a hurricane, and the risk of 

high-frequency flows. 

2.2 Traditional bandwidth selectors 

It is a well-known fact that bandwidth selection plays a vital role in nonparametric kernel-based 

methods. Some commonly used bandwidth selectors will be described in upcoming lines, which will 

be used for this article. 

2.2.1. Plug-in bandwidth selection 

The usual plug-in bandwidth selection procedure often works by minimizing a particular 

quadratic error between the estimator and the underlying true function like the mean integrated 

square error (MISE). After this, the selection of bandwidth minimizes the asymptotic estimation. 

https://www.wordhippo.com/what-is/another-word-for/appealing.html
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𝑀𝐼𝑆𝐸(𝐹́𝜆) = ∫ (𝐹́𝜆(𝑦) − 𝐹(𝑦))2∞

−∞
𝑑𝑦                 (4) 

According to Altman and Leger [17], under the assumptions of smoothness, it can be written as: 

𝑀𝐼𝑆𝐸(𝐹́𝜆) = 𝜆4 ∫ 𝐶𝑈
2(𝑦)

∞

−∞
𝑑𝑦 +

1

𝑛
∫ 𝐹(𝑦)(1 − 𝐹(𝑦)

∞

−∞
𝑑𝑦 −

𝜆

𝑛
∫ 𝑇𝑓

2(𝑦)𝑑𝑦 + 𝑜(𝑀𝐼𝑆𝐸)(𝜆))
∞

−∞
  (5) 

Therefore, 

𝐶𝐹(𝑦) =
1

2
(𝑓́(𝑦))2(∫ 𝑦2𝑘(𝑦)𝑑𝑦)

∞

−∞
 and  𝑇𝐹

2(𝑦) = 2𝑓(𝑦)(∫ 𝑦𝑘(𝑦)𝐺(𝑦)𝑑𝑦)
∞

−∞
  (6) 

This can be in an asymptotically optimal bandwidth as: 

𝜆𝐴𝑀𝐼𝑆𝐸(𝐹̂𝜆) = 𝐵𝑛−1 3⁄ = (
1

2
∫ 𝑇𝐹

2(𝑦)𝑑𝑦
∞

−∞

∫ 𝐶𝐹
2(𝑦)𝑑𝑦

∞
−∞

)1 3⁄  𝑛−1 3⁄                (7) 

According to Eq (7), the optimal bandwidth order is 𝑛−1 3⁄  than 𝑛−1 5⁄ . As per Silverman’s [27] 

recommendation, this is the optimal order for kernel nonparametric density estimation. However, in 

the case of nonparametric distribution estimation, as the sample size increases, the optimal 

bandwidth decreases compared to density estimation. A smaller bandwidth size for nonparametric 

density estimation leads to a closer estimation of the actual density. Therefore, the X-axis and the 

area under the estimated curve provide better estimation results for the actual area. 

Therefore, a large bandwidth is recommended to achieve a smoother estimator. The value of 𝐶 

in Eq (7) is based on the kernel function. 

𝜆̂ = 𝐶̂𝑛−1 3⁄              (8) 

where 𝐶̂ represents data sample. 

2.2.2. ALbw (Plug-in bandwidth of Altman and Leger) 

Altman and Leger [17] introduced a plug-in technique that is commonly known as a 

nonparametric estimation technique used to estimate the unknown terms of Eq (7), which represents a 

function with asymptotically optimal bandwidths. By applying the technique of Altman and Leger [17], 

Eq (7) can be expressed as 

𝜆𝐴𝑀𝐼𝑆𝐸(𝐹̂𝜆) = (

1
4

𝑇2

𝐶3
)1 3⁄  𝑛−1 3⁄  

𝑇2 = ∅(𝑘) ∫ [𝑓(𝑦)]2𝑑𝑦
∞

−∞
   ∅(𝑘) = 2 ∫ 𝑦𝑘(𝑦)𝐺(𝑦)𝑑𝑦

∞

−∞
            (9) 

𝐶3 =
1

4
(𝜔2(𝑘2)) ∫ [𝑓′(𝑦)]2𝑓(𝑦)𝑑𝑦

∞

−∞
; 𝜔2(𝑘) = ∫ 𝑦2𝑘(𝑦)𝑑𝑦

∞

−∞
 

The plug-in bandwidth can be written as: 
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𝜆𝐴𝐿(𝐹̂𝜆) = (
1

4
𝑇2

𝐶3
)1 3⁄  𝑛−1 3⁄                    (10) 

Therefore, 

𝑇̂2 = ∅(𝑘)
1

𝑛(𝑛−1)
∑ ∑

1

𝛾

𝑛
𝑗=1,𝑗≠1 𝑘(

𝑦𝑖−𝑦𝑗

𝛾

𝑛
𝑖=1 )             (11) 

𝐶̂3 =
1

4
𝑍̂3(𝐹)(𝜔2(𝑘))2                 (12) 

Thus, 

𝑍̂3(𝐹) =
1

𝑛3𝛾𝑏
4 ∑ ∑ ∑ 𝑘𝑏

′ (
𝑦𝑖−𝑦𝑗

𝛾𝑏

𝑛
𝑘=1 )𝑘𝑏

′ (
𝑦𝑖−𝑦𝑘

𝛾𝑏
)𝑛

𝑗=1
𝑛
𝑖=1 .          (13) 

In the above function, 𝑘𝑏
′  represents the derivative of the kernel function 𝑘𝑏. It is not required 

for 𝑘𝑏 to be equal to 𝑘 . The bandwidth parameter related to this is represented by 𝛾𝑏 . For 

implementation, it can be chosen as 𝛾𝑏 = 𝛾 and 𝑘𝑏 = 𝑘. 

2.2.3. PBbw (Polansky and Baker Plug-in bandwidth) 

For the estimation of 𝑅(𝑓′), a nonparametric estimate is used. Mathematically, it can be written 

as 

𝜑𝑚 =  ∫ 𝑓𝑚(𝑦)
∞

−∞
𝑓(𝑦)𝑑𝑦,              (14) 

Therefore, 𝑚 is considered an even integer, and 𝑚 ≥ 2. Integration by parts is applied by 

considering the adequate smoothness assumptions on 𝑓 , and we get 𝑅(𝑓(𝑎) = (−1)𝑎𝜑2𝑦 . The 

concept of kernel estimates for 𝜑𝑚 was initiated by Hall and Marron [28], and Jones and Sheather [29] 

amended the idea. By utilizing the “diagonal-in” method to estimate 𝜑𝑚, it can be written as: 

𝜑̂𝑚(𝑣) = 𝑛−2𝑣−𝑚−1 ∑ ∑ 𝐻𝑚𝑛
𝑗=1 {

𝑌𝑖−𝑌𝑗

𝑣

𝑛
𝑖=1 }         (15) 

where 𝐻 represents the kernel function, and it is not required for 𝐿 to be equal to 𝑘. However, 

𝑣 is a positive parameter that represents bandwidth and is known as a smoothing parameter. 

According to the conditions of 𝑣 → 0 and 𝑛𝑣2𝑚+1 → ∞  as 𝑛 → ∞ , the bandwidth factor 𝑣 

minimizes 𝐸[{𝜑̂𝑚(𝑣) − 𝜑𝑚}2] and was introduced by Jones and Sheather [29]. It can be written as: 

𝑣𝑚 = [
2𝐻𝑚(0)

−𝑛𝜔2(𝐻)𝜑𝑚+2
]1 𝑚+3⁄             (16) 

The findings of Eq (16) are utilized to find the estimate of the following function 

 𝜆𝑑 = [
∅(𝑘)

𝑛𝜔2
2(𝑘)𝑅(𝑓′)

]1 3⁄            (17) 

By solving Eqs (16) and (17), we get: 

https://www.wordhippo.com/what-is/another-word-for/adequate.html
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𝜆̂𝑑= [
∅(𝑘)

−𝑛𝜔2
2(𝑘)𝜑̂2(𝑣2)

]1 3⁄            (18) 

However 

𝑣2 = [
2𝐻(2)(0)

−𝑛𝜔2(𝐻)𝜑4
]1 5⁄             (19) 

We found that 𝑣2 relies on 𝑓 succeeding 𝜑4, which is also necessary to estimate. This can be 

performed by estimating 𝜑4  with 𝜑̂4(𝑣4) ; therefore, bandwidth factor 𝜑4  relies on 𝜑6 

continuously. According to Sheather and Jones [29], it is also important to estimate 𝜑𝑚 at some step 

by using some distribution; generally, a normal distribution is taken as a reference distribution. 

Consider the function 𝑓 as normal i.e., the mean of 𝑓 is 𝜇 and variance is 𝜎2. It can be written 

as: 

𝜑𝑚 =
(−1)𝑟 2⁄ 𝑟!

(2∅)𝑚+1(𝑚
2⁄ )!𝜋1 2⁄                 (20) 

Thus, the normal scale estimate of 𝜑𝑚 can be written as: 

𝜑̂𝑚
𝑁𝑅 =

(−1)𝑟 2⁄ 𝑟!

(2∅̂)𝑚+1(𝑚
2⁄ )!𝜋1 2⁄             (21) 

Therefore, ∅̂ is either considered the standard deviation of sample or ∅̂ = min {𝑆,
𝐼𝑄𝑅

1.349
}. 

In this situation, it is recommended to use a 𝑐-stage estimator of 𝜆𝑑 that can be estimated by 

applying the algorithm outlined below. Here, 𝑐  is an integer greater than zero (𝑐 > 0). The 

estimation process is divided into following steps: 

1) Evaluate 𝜑̂2𝑐+2
𝑁𝑅  using Eq (21) 

2) Use 𝑗 = 𝑏 for evaluation and continuously proceed the iterations until 𝑗 = 1, then compute 

𝜑̂2𝑗(𝑣̂2𝑗), as follows: 

𝑣̂2𝑗 = [
2𝐻(2𝑗)(0)

−𝑛𝜔2(𝐻)𝜑̂2𝑗+2
]1 (2𝑗+3)⁄              (22) 

where 

𝜑̂2𝑗+2 = {
𝜑̂2𝑐+2

𝑁𝑅                          𝑤ℎ𝑒𝑛 𝑗 = 𝑏

𝜑̂(2𝑗+2)(𝑣̂2𝑗+2)         𝑤ℎ𝑒𝑛 𝑗 < 𝑏
        (23) 

Evaluate 

𝜆̂𝑐 = [
∅(𝑘)

−𝑛𝜔2
2(𝑘)𝜑̂2(𝑣̂2)

]1 3⁄                     (24) 

This results in the 𝑐-stage estimator. 
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2.2.4. CVbw (Cross-Validation bandwidth of Bowman et al.) 

There are many approaches for selecting the bandwidth for kernel smoothing of distribution 

functions. Sarda [26] and Altman and Leger [17] suggested the “plug-in” and “leave-one-out” 

methods primarily used for density estimation. In contrast, Bowman et al. [19] proposed a 

cross-validation method that is more advantageous for smoothing distribution functions. This 

approach proved to be a more accurate analogue compared to other density estimation approaches. 

The bandwidth selection parameter depends on the unbiased estimation of MISE. According to 

Bowman et al. [19], this method minimizes the MISE value, indicating an optimal smoothing 

parameter. Thus, it demonstrates asymptotically optimal bandwidth selection, where kernel 

approaches enhance the general empirical distribution function. 

In nonparametric statistics, the cross-validation technique is based on the estimated value of 

MISE of the function. After this, selection of bandwidth is to be done for minimization of this 

function. According to Sarda [26], 

𝐶𝑉(𝜆) = ∑ (𝑈𝑛(𝑥𝑖) − 𝑈̂−𝑖(𝑥𝑖))2𝑛
𝑖=1        (25) 

In the above equation, 𝐶𝑉(. )  is used to minimize the differences among the observed 

distribution function 𝑈𝑛(𝑥) = 𝑛−1 ∑ 𝐼(−∞,𝑥](𝑥𝑗)𝑛
𝑗=1  and leave-one-out class of the kernel 

distribution estimator. The following estimator is expressed as an estimator that uses all the 

particulars (points) apart from 𝑥𝑖, 

𝑈̂−𝑖(𝑥) =
1

𝑛−1
∑ 𝐻𝑗≠1 (

𝑥−𝑥𝑗

𝜆
)            (26) 

Regardless of the numerical value of asymptotic optimality given by Sarda [26], this technique 

does not yield practically effective results. Therefore, the cross-validation technique improved by 

Bowman et al. [19] provides better results in simulation studies. This technique is asymptotically 

optimal and involves minimizing the function. 

𝐶𝑉(𝜆) =
1

𝑛
∑ ∫ (𝐼(𝑥 − 𝑥𝑖) − 𝑈̂−𝑖(𝑥))2𝑑𝑥

+∞

−∞
𝑛
𝑖=1      (27) 

In this function, 𝐼(𝑥 − 𝑥𝑖) = 1, therefore, 𝑥 − 𝑥𝑖 ≥ 0 and elsewhere it is 0. A simulation study 

was carried out by Bowman [19] who compared the results with the plug-in-one method suggested 

by Altman and Leger [17]. The drawback of this method is that it affects the performance related to 

computational time. By using the method of cross-validation, the minimization of the function is 

carried out for the term 𝑛2. Thus, it is necessary to search for a larger bandwidth grid. However, in 

the evaluation of an integral term, it provides good results. 

It is worthy to note that we will use all three bandwidth selectors, ALbw, PBbw, and CVbw , in our 

proposed estimator analysis in the upcoming section. 

3. Calibration approach and estimation of distribution function 

In this section, we present a new method for estimating the cumulative distribution function 

(CDF), incorporating distribution function insights and auxiliary variable descriptive measures under 

https://www.wordhippo.com/what-is/another-word-for/primarily.html
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stratified random sampling. Comparative results reveal that the calibration-based estimator achieves 

higher accuracy than conventional techniques in finite population scenarios. The proposed estimator is 

𝐹𝑠𝑡(𝑗) = ∑ 𝑉ℎ𝐹𝜆
′(𝑦ℎ)𝐻′′

ℎ=1  for j = 1,2          (28) 

where 𝑉ℎ  represents calibration weights and 𝐹𝜆
′(𝑦ℎ)  stands for the kernel-based CDF in this 

formulation. Now, considering chi-square loss function: 

𝐿(𝑉ℎ , 𝜋ℎ) =  ∑
(𝑉ℎ − 𝜋ℎ)2 

𝜋ℎ△ℎ

𝐻′′
ℎ=1          (29) 

and using these calibration constraints 

∑ 𝑉ℎ𝜇̂𝑥ℎ
𝐻′′
ℎ=1  = ∑ 𝜋ℎ𝜇𝑥ℎ

𝐻′′
ℎ=1         (30) 

∑ 𝑉ℎ𝐹𝜆
′(𝑥ℎ)𝐻′′

ℎ=1  = ∑ 𝜋ℎ𝐹(𝑥ℎ)𝐻′′
ℎ=1        (31) 

∑ 𝑉ℎ𝑐𝑥ℎ
𝐻′′

ℎ=1  = ∑ 𝜋ℎ𝐶𝑥ℎ
𝐻′′

ℎ=1         (32) 

where 𝑐𝑥ℎ is the CV of the sample auxiliary variable 𝑋. To elaborate on various forms of estimators, 

△ℎ is an appropriately selected weight. For more information about appropriate weight selection and 

the use of descriptive measures, refer to Koyuncu [1] and Shahzad et al. [8,9]. 

The Lagrange function can be written as: 

𝛺 =  ∑
(𝑉ℎ− 𝜋ℎ)2

𝜋ℎ△ℎ
 −𝐻′′

ℎ=1 2𝜃′
1(∑ 𝑉ℎ𝜇̂𝑥ℎ

𝐻′′

ℎ=1 − ∑ 𝜋ℎ𝜇𝑥ℎ
𝐻′′
ℎ=1 ) −   2𝜃′

2(∑ 𝑉ℎ𝐹𝜆
′(𝑥ℎ)𝐻′′

ℎ=1 −

 ∑ 𝜋ℎ𝐹(𝑥ℎ)𝐻′′

ℎ=1 ) −  2𝜃′
3(∑ 𝑉ℎ𝑐𝑥ℎ

𝐻′′

ℎ=1 −  ∑ 𝜋ℎ𝐶𝑥ℎ
𝐻′′

ℎ=1 )                (33) 

The Chi-square loss function Eq (29) is minimized by considering the calibration constraints Eqs 

(30)–(32), which provide the calibration weights in the case of stratified sampling. 

𝑣 =  𝜋ℎ +  𝜋ℎ △ℎ (𝜃′
1𝜇̂𝑥ℎ+ 𝜃′

2𝐹𝜆
′(𝑥ℎ) +  𝜃′

3𝑐𝑥ℎ)            (34) 

By substituting Eq (34) into Eqs (30)–(32), the given relations are provided. 

[

𝐴11 𝐴12 𝐴13

𝐴12 𝐴22 𝐴23

𝐴13 𝐴23 𝐴33

] [

𝜃′
1

𝜃′
2

𝜃′
3

] = [

𝐴10

𝐴20

𝐴30

]           (35) 

By solving the above system of Eq (35) for 𝜃′
𝑠 , we get 

𝜃′
1 =  

(𝐴13𝐴23 − 𝐴12𝐴33)(𝐴12𝐴20 − 𝐴22𝐴10) −  (𝐴13𝐴22 −  𝐴12𝐴23)(𝐴12𝐴30 −  𝐴23𝐴10)

(𝐴2
12 − 𝐴11𝐴22)(𝐴13𝐴23 − 𝐴12𝐴33) −  (𝐴13𝐴22 −  𝐴12𝐴23)(𝐴12𝐴13 −  𝐴11𝐴23)

 

𝜃′
2 =  

(𝐴13𝐴23 −  𝐴12𝐴33)(𝐴12𝐴10 −  𝐴11𝐴20) − (𝐴12𝐴13 − 𝐴23𝐴11)(𝐴13𝐴20 − 𝐴12𝐴30)

(𝐴2
12 − 𝐴11𝐴22)(𝐴13𝐴23 − 𝐴12𝐴33) −  (𝐴13𝐴22 −  𝐴12𝐴23)(𝐴12𝐴13 − 𝐴11𝐴23)

 

𝜃′
3 =  

(𝐴2
12 −  𝐴11𝐴22)(𝐴13𝐴20 − 𝐴12𝐴30) − (𝐴13𝐴22 −  𝐴12𝐴23)(𝐴12𝐴10 − 𝐴11𝐴20)

(𝐴2
12 − 𝐴11𝐴22)(𝐴13𝐴23 − 𝐴12𝐴33) −  (𝐴13𝐴22 −  𝐴12𝐴23)(𝐴12𝐴13 − 𝐴11𝐴23)
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whereas 

𝐴11 =  ∑ 𝜋ℎ △ℎ 𝜇̂𝑥ℎ
𝐻′′

ℎ=1  , 𝐴22 =  ∑ 𝜋ℎ △ℎ 𝐹𝜆
′2𝑥ℎ

𝐻′′

ℎ=1 ,  𝐴33 =  ∑ 𝜋ℎ △ℎ 𝑐2𝑥ℎ
𝐻′′

ℎ=1 , 

𝐴12 =  ∑ 𝜋ℎ △ℎ 𝜇̂𝑥ℎ𝐹𝜆
′(𝑥ℎ)𝐻′′

ℎ=1  ,    𝐴13 =  ∑ 𝜋ℎ △ℎ 𝜇̂𝑥ℎ𝑐𝑥ℎ
𝐻′′

ℎ=1 ,  𝐴23 =  ∑ 𝜋ℎ △ℎ 𝐹𝜆
′(𝑥ℎ)𝑐𝑥ℎ

𝐻′′

ℎ=1  

𝐴10 =  ∑ 𝜋ℎ𝜇𝑥ℎ − 𝜇̂𝑥ℎ
𝐻′′

ℎ=1  ,   𝐴20 =  ∑ 𝜋ℎ𝐹(𝑥ℎ) − 𝐹𝜆
′(𝑥ℎ)𝐻′′

ℎ=1 ,  𝐴30 =  ∑ 𝜋ℎ(𝐶𝑥ℎ − 𝑐𝑥ℎ)𝐻′′

ℎ=1  

By substituting the value of 𝜃′
𝑠 into Eq (34), we obtain Eq (28). Therefore, considering △ℎ = 1, 

we get the proposed non-parametric kernel estimator 𝐹𝑠𝑡(𝑗) for population CDF as given below: 

𝐹𝑠𝑡(𝑗) = ∑ 𝜋ℎ𝐹𝜆
′(𝑦ℎ)𝐻′′

ℎ=1  + 𝐸1ℎ𝐴10 + 𝐸2ℎ𝐴20 + 𝐸3ℎ𝐴30     (36) 

whereas 

𝐸1ℎ =  
𝑑12[𝑑14(𝑑22𝑑33 − 𝑑2

23) + 𝑑24(𝑑13𝑑23 −  𝑑12𝑑23) +  𝑑34(𝑑12𝑑23 − 𝑑13𝑑22)]

(𝑑2
12  −  𝑑11𝑑22)(𝑑13𝑑23 − 𝑑2

12) − (𝑑13𝑑22 −  𝑑12𝑑23)(𝑑12𝑑23 −  𝑑11𝑑23)
 

𝐸2ℎ =  
𝑑12[𝑑14(𝑑13𝑑23 −  𝑑12𝑑33) + 𝑑24(𝑑11𝑑33 − 𝑑2

13) +  𝑑34(𝑑12𝑑13 −  𝑑11𝑑23)]

(𝑑2
12  −  𝑑11𝑑22)(𝑑13𝑑23 − 𝑑2

12) − (𝑑13𝑑22 −  𝑑12𝑑23)(𝑑12𝑑13 −  𝑑11𝑑23)
 

𝐸3ℎ =  
𝑑12[𝑑14(𝑑13𝑑22 −  𝑑12𝑑23) + 𝑑24(𝑑12𝑑13 −  𝑑11𝑑23) +  𝑑34(𝑑11𝑑22 − 𝑑2

12)]

(𝑑2
12  −  𝑑11𝑑22)(𝑑13𝑑23 − 𝑑2

12) − (𝑑13𝑑22 −  𝑑12𝑑23)(𝑑12𝑑13 −  𝑑11𝑑23)
 

𝑑11 =  ∑ 𝜋ℎ
𝐻′′

ℎ=1 𝜇̂2
𝑥ℎ ,   𝑑22 =  ∑ 𝜋ℎ

𝐻′′

ℎ=1 𝐹𝜆
′2(𝑥ℎ) , 𝑑33 =  ∑ 𝜋ℎ

𝐻′′

ℎ=1 𝑐2
𝑥ℎ  

𝑑12 =  ∑ 𝜋ℎ
𝐻′′

ℎ=1 𝜇̂𝑥ℎ𝐹𝜆
′(𝑥ℎ) ,  𝑑13 =  ∑ 𝜋ℎ

𝐻′′

ℎ=1 𝜇̂𝑥ℎ𝑐𝑥ℎ , 𝑑14 =  ∑ 𝜋ℎ
𝐻′′

ℎ=1 𝜇̂𝑥ℎ𝐹𝜆
′(𝑦ℎ), 

𝑑23 =  ∑ 𝜋ℎ
𝐻′′

ℎ=1 𝐹𝜆
′(𝑥ℎ)𝑐𝑥ℎ , 𝑑24 =  ∑ 𝜋ℎ

𝐻′′

ℎ=1 𝐹𝜆
′(𝑥ℎ)𝐹𝜆

′(𝑦ℎ) ,  𝑑34 =  ∑ 𝜋ℎ
𝐻′′

ℎ=1 𝑐𝑥ℎ𝐹𝜆
′(𝑦ℎ) 

Now, the performance of the proposed non-parametric kernel estimator 𝐹𝑠𝑡(𝑗) of the CDF will be 

assessed using a simulation study in the next sub-sections. 

3.1. Numerical study 

We evaluated the proposed estimator in this section through different populations. For the 

simulation, two datasets from different populations were considered to ensure that the efficiency of 

the suggested estimator surpasses that of traditional estimators. In the population-1 dataset, apple 

fruit production data from 1999, with respect to the number of apple trees, was used from 4 different 
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regions. In the population-2 dataset, we considered data on wheat production in Pakistan from 1960 

to 2020 with respect to the area used for wheat cultivation each year. The Percentage Relative 

Efficiency (PRE) of the proposed estimators was computed as: 

𝑀𝑆𝐸(𝐹𝑠𝑡(𝑗)) =  
1

(𝑁
𝑛

)
∑(𝐹𝑠𝑡(𝑗) − 𝐹(𝑦ℎ))

(𝑁
𝑛)

𝑖−1

 

where 

𝐹(𝑦ℎ) = 
1

(𝑁
𝑛)

∑ (𝐹𝑠𝑡(𝑗))
(𝑁

𝑛)

𝑖−1
 

Therefore, 

𝑃𝑅𝐸(𝐹𝑠𝑡(𝑗)) =  
𝑀𝑆𝐸(𝑑0)

𝑀𝑆𝐸(𝐹𝑠𝑡(𝑗))
⨯ 100 

3.1.1. Population-1 

In the first analysis, we used the dataset of apple fruit for a simulation [30]. Here, 𝑋 represents 

the number of trees. We set the scale such that 100 trees are considered 1 unit. Therefore, 𝑌 

represents the production quantity. According to the scale settings, 100 tonnes are equal to 1 unit. It 

is important to note that 477 villages are considered in 4 strata: Stratum 1 represents Marmarian, 

Stratum 2 indicates Aegean, Stratum 3 shows Mediterranean, and Stratum 4 denotes Central Anatolia. 

The PREs of the suggested estimators are evaluated using the mentioned dataset. The value of PRE 

for ALbw is 102.4369, PBbw is 106.949, and CVbw is 109.8822, as shown in Figure 1. 

 

Figure 1. PRE for apple data. 

3.1.2. Population-2 

In the second empirical analysis of the estimators, we considered a dataset consisting of two 

variables, 𝑋 and 𝑌. Variable 𝑋 denotes the production of wheat crop in Pakistan from the year 

1960 to 2020, while 𝑌 represents the area under cultivation every year. Four strata are created, each 
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representing one province of Pakistan. Stratum 1 represents the province of Punjab, Stratum 2 

denotes the province of Sindh, Stratum 3 shows the province of KPK, and Stratum 4 indicates the 

province of Baluchistan. PREs for the proposed estimators are calculated using this data. The PRE 

for ALbw is 103.6978, PBbw is 102.9949, and CVbw is 104.0085, as indicated in Figure 2. 

 

Figure 2. PRE for wheat data. 

3.2. Simulation study 

For the simulation study, a population size of 500 is considered with a total sample size of 100 

from both strata. A sample of size 50 is selected from each stratum using equal allocation. The 

auxiliary variable X for the first and second stratum is generated using gamma distributions with 

parameters 𝐺(2.5, 3.7) and 𝐺(1.9, 2.9). The study variable Y is generated for each stratum as 

follows: 

𝑌ℎ = 𝑇 + 𝑊𝑋ℎ + 𝐽𝑋ℎ
𝑒, 

where J follows a standard normal distribution, and 𝑇 = 4, 𝑒 = 1.6, 𝑎𝑛𝑑 𝑊 = 2. For the detailed 

steps of the simulation study, interested readers may refer to Shahzad et al. [8,9]. The PRE for ALbw 

using a simulation study is 102.3112, for PBbw it is 101.2999, and for CVbw it is 106.0021, as 

shown in Figure 3. 

 

Figure 3. PRE for simulated data. 
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3.3. Results and discussion 

Figures 1–3 show the results and indicate that the proposed kernel-based non-parametric 

estimator outperforms traditional methods very well in PRE values larger than 100 for all datasets. 

The results demonstrate the estimator's effectiveness in improving CDF estimation with stratified 

random sampling. Additionally, calibration constraints and auxiliary information are included more 

effectively for improved efficiency. 

In this study, the CVbw method proved to be the most reliable bandwidth selection method of 

all the tested bandwidth selection methods, as it was the most consistent in terms of efficiency. 

CVbw performed better than both PBbw and ALbw, indicating that the adaptive bandwidth selection 

in CVbw-based algorithms is better for optimizing the estimator. Robust numerical results are 

derived from the proposed estimator, and it is a promising solution to improve the estimation 

accuracy in biological sciences, agriculture, and food sciences, where auxiliary variables could be 

used to enhance the estimation quality (tree count, land area, etc.). It is also likely to be useful in 

environmental studies, finance, and social sciences, given the necessity of accurate estimations of 

distribution. 

3.4. Limitations of the study 

The proposed estimator is shown to possess superior efficiency and robustness; however, some 

limitations should be noted. This methodology is based on the availability and quality of auxiliary 

information and can be affected if these data are incomplete or inaccurate. 

4. Conclusions 

We present a kernel-based nonparametric estimator of the CDF under the framework of finite 

population estimation for stratified random samples. The use of auxiliary information and the 

application of calibration constraints improve the accuracy and robustness of the proposed 

methodology with the help of a chi-square loss function. Comparisons of results from simulation 

analyses involving apple production data from Turkey and wheat production data from Pakistan also 

reflect the increased performance of the proposed estimator when PREs are considered, with values 

above 100%. These results support the reliability of the study and the real-life applicability of the 

estimator in various industries such as agricultural research. The graphical results also emphasize 

how efficient the estimator is in helping to solve real-life problems in the estimation of CDF. This 

leads to a discussion of how the presented work can be used for the following studies: The 

improvement and expansion of the methodology to suit more complex population structures and the 

examination of the domains relevant to further fields of environmentalism, social issues, and other 

branches of science. In future studies, the work can be extended for cluster or multi-stage sampling 

in light of [31–33]. Moreover, additional theoretical studies on loss function choice beyond the 

chi-square approach could be pursued, namely entropy based measures, to make the estimator robust. 
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