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Abstract: We study the varying-coefficient partially linear model when some linear covariates are not
observed, but their auxiliary instrumental variables are available. Combining the calibrated error-prone
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1. Introduction

Varying-coefficient partially linear model is one of the most popular semiparametric regression
models. It takes the form as

Y=X"0+Z"a(U) +¢, (1.1)

where Y is the response variable, X, Z and U are the associated covariates, ® is a p-dimensional
vector of unknown parameters, a(.) is a g-dimensional vector of nonparametric function, & is model
error with E(¢|X, Z,U) = 0 and Cov(¢|X, Z, U) = 0. By combining the flexibility of nonparametric
model and the adaptability of parametric model, model (1.1) is quite general which covers many
important models as special cases, such as liner model, varying-coefficient model, partially linear
model and others. However, due to the low accuracy of instrument equipment, the imperfection of
measurement technique, and the high price or time cost, it is often impossible to observe accurate data
in the experiments, but the data with errors-in-variables(EV) [1]. If one simply ignores the
measurement error, known as naive method, it will result in unreliable statistical inference, such as
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biased estimators, loss of efficiency, decreasing power of hypothesis testing. According to the
diversity of errors in variables, the treatment of measurement errors differs for various types.

Early research focused on the study of simple additive measurement errors in the linear component.
Instead of true variable X, we can observe i with 7 = X + e and e is the measurement error, which is
independent of (X, Z, U, €). You and Chen [2] proposed a modified profile least squares procedure and
Wang et al. [3] applied empirical likelihood inference to study model (1.1) with measurement errors
in the linear part. On the other hand, measurement error in the nonparametric part in model (1.1) may
occur in reality. The surrogate variable 7 is observed by n = Z + e with the measurement error e. Feng
and Xue [4] proposed a local bias-corrected restricted profile least squares estimators and Fan et al. [5]
applied some auxiliary information to construct empirical log-likelihood ratios for both parameter and
nonparametric functions. It is noted that in the above literature, we assumed that the relationship
between the unobservable variable and the observed EV data is simple additive. Furthermore, it is
necessary that in the statistical inference, the variance of measurement error is known before. Even if
the variance of error is unavailable in practice, we can use the estimators to replace it by repeatedly
measuring actually observation data 7.

However, the additive measurement error structure may not describe the complexity of
experimental data and sometimes there are no repeated observations to estimate the variance of
measurement error. In this paper, we do not specify any model structure of the measurement error,
and do not require the information of the variance of measurement error. Furthermore, repeated
measurement data are not necessary. We assume that some variables are unobserved directly, but
auxiliary information is available to remit the true variable. Specifically, the unobserved variable and
the observed surrogate variable with measurement error is connected by a nonparametric structure
with an instrument variable. Let X = (£7, WT)T, where € is a p; X 1 unobserved directly vector and W
is a vector of the remaining exactly observed components. We assume that the true variable £ is
related to the observed measurement variable 5 and auxiliary variable V' through the nonparametric
structure

&=EMV)=&V). (1.2)

From assumption (1.2), model (1.1) with error-prone linear covariates implies that

n=EV)+e (-

{Y =E&B+W'o+Z2"a(U)+e
with @ = (B7,0")", X = (7, WT)T and e is the measurement error with E(e|V) = 0 and the covariance
matrix X,. Therefore, the error model structures of & is a special cases of the additive error models. For
the sake of simplicity, we assume that the auxiliary variables V is scalar. This structure of measurement
error is more general, introduced by Zhou and Liang [6], which includes denoise linear model and
rational expectation model and others. Zhou and Liang [6] proposed a regression calibration technique
to reduce the bias due to mismeasurement and then developed the profile least-square based estimation
procedure for parametric and nonparametric components.

Meanwhile, this structure of error-prone covariates has been extensively studied by researchers for
other semiparametric models. For the varying-coefficient models with error-prone covariates, Zhao
and Xue [7] constructed confidence interval for the varying-coefficient functions using instrumental
variable-based empirical likelihood inference and Xu et al. [8] presented an instrumental variable
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type local polynomial estimator. Zhang et al. [9] proposed the estimation and variable selection for
partial linear single index model when some linear covariates are not observed, but their ancillary
variables are available. Huang and Ding [10] studied a new partially linear error-in-variable models
with error-prone covariates in the parametric part and mismeasured covariates in the nonparametric
part, simultaneously. Sun et al. [11] developed an estimation procedure for semiparametric varying-
coeflicient partially linear model when both response and part of covariates are measured with error by
functions of some auxiliary variables.

In this paper, we propose two step estimation procedure for model (1.3). In the first step, we give a
bias correction for the error-prone covariate by using ancillary information and applying locally linear
technique. Then the covariates are corrected based on instrumental variables. In the second stage,
instead of profile least squares estimation, we propose a robust estimation procedure. It is remarkable
that the least squares technique may be sensitive to outliers and inefficient for many non-normal error
distributions. Modal regression, introduced by Yao et al. [12], is a powerful tool for revealing the
underlying relationship between the response and corresponding covariates in the presence of outlier
or non-normal error distribution, and it has been successfully applied to various semiparametric models
(Zhao et al. [13], Yang and Yang [14] and Yang et al. [15], Lv et al. [16], Yu et al. [17] and others).
This technique has some good properties, such as easy to implement, robust to outliers, full asymptotic
efficiency under the non-normal error distribution. Motivated by these, we extend modal regression in
the second stage to estimate the parameter and nonparametric function.

The rest of this paper is organized as follows. Section 2 introduces a two-stage robust instrumental
variables-based modal regression estimator and Section 3 establishes its theoretical properties. In
section 4, we discuss the selection of bandwidth and the specific estimation algorithm. Simulation
studies are conducted to evaluate the performances of the proposed estimation procedure in Section 5.
A real data analysis is illustrated in section 6 to show the effective of the proposed estimation
procedures. We make our concluding remarks in Section 7 and leave the proofs of the main Theorems
in Section 8.

2. Robust estimation procedure

In this section, we propose a two-stage robust estimation procedure for model (1.3). Firstly, the
local linear smoothing is adapted to calibrate the variable £ by using auxiliary instrument variables 7
and V. Secondly, based on B-spline basis functions and modal regression, the final estimators of the
parametric and nonparametric components are obtained.

2.1. Covariate calibration

Suppose that {(Y;, &, Wi, Z;, U;, m;, Vi)}._, is the independent and identically distributed sample from

(Y,¢,W,Z,U,n,V). The varying-coefficient partially linear model with error-prone in linear covariates
has the following form,

Y, =& B+W 0+ Z a(U) +¢ 1)

ni=&V)+e; ' '

Firstly, we need to calibrate the covariate €;, which is not observed in model (2.1). Let n; be the

kth entry of vector n;,i = 1,...,n. To estimate &(v), the kth component of &£(v), we employ the local
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linear smoothing technique [18] to minimize

n

D i = ao = aw(Vi = VPLy (Vi = ), (2.2)

i=1

where L,(.) = L(./b)/b is the kernel function, and b = b, for k = 1,..., p; is the bandwidth for the kth
component of &. The local linear estimator of &(v),k = 1,..., p;, denoted by fk(v),

EW) = ag = (1,O)VIW, V) ' VIw,g®, (2.3)

v

where 1 = (1, 9oy - - )T, W, = diag(Ly, (Vi = v), Ly (V2 = V), ..., Ly (V, —v)), and V,, is defined
in the following,

1 Vl—V

1 VZ_V
Vi=|. . .

1 V,—v

Therefore, unobserved covariate & can be replaced by its local linear estimator &(V;), abbreviated
as &;. Then the robust estimators of parameters and nonparametric function can be constructed in the
following procedure.

2.2. Modal regression estimator

Following Schumaker [19], we can replace the nonparametric functions a;(u),k = 1,2,...,q
through their basis function approximations. Let B(u) = (B;(u),...,B;(u))" be the B-spline basis
function with the order of M, where L = K + M and K is the number of interior knots. Then, the
nonparametric function () can be approximated by

a(w) ~ By, k=1,2,...,q, (2.4)
where v; = (Yu1, Y2, - - - » vir)! . Then model (2.4) is substituted into the model (2.1), we can obtain
Y& B+W O+ y+e,i=1,....,n, (2.5)

where IT; = I,® B(U;)-Z;and y = (¥{,v},...,v})". Model (2.5) is a standard linear regression model,
and it contains three parametric vectors 8, 6 and y. Each function @,(.) in model (2.1) is characterized
by ¥, in model (2.4).

Based on the thought of modal regression [12], the estimators of the parameters B, 6 and y are
obtained through maximizing the following objective function,

LB.0.y)= ) oY, - € B-W o-T]y), (2.6)
i=1

where ¢,(.) = ¢(./h)/h, ¢(.) is the kernel function and 4 is a bandwidth. The value of bandwidth i
determines the level of the robustness of the estimator, then the specific selection of optimal bandwidth
h is described in the next section.
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However, we can not maximize (2.6) directly due to the unobserved variable &;. Instead, we
substitute the local linear estimator &; with the true variable &;. Further, the calibrated expression is
rewrite as

LB.0.7) = ) ouYi =&/ B-W o -T]y). 2.7)
i=1

Therefore, we get the spline modal regression estimators B, 6 and ¥ by maximizing the objective
function (2.7). Then, the corresponding estimator of coefficient function @, (u) is obtained by &, (u) =
Bw'y,k=1,2,....,q.

3. Theoretical properties

In this section, we discuss the asymptotic properties of the resulting estimators. Denote
Q) = (BL,6))" and ay(.) to be the true value of @ = (B7,0")" and @(.) in model (1.1).
Correspondingly, yo; is the best approximation coefficient of ay;(#) in the B-spline space. Let
F(x,z,u,h) =E@®,/ (&)X =x,Z = z,U = u) and G(x,z,u, h) = E(¢;l(s)2|X =x,Z =2z,U =u).

We begin with the following assumption conditions required to derive the main results. These
conditions are quite mild and can be easily satisfied.

Al: The random variable U has a bounded support U. Its density function f,(.) is Lipschitz
continuous and bounded away from O and infinite on its support. The density function of random
function V, f,(.) is continuously differentiable and bounded away from 0 and infinite on its support V.

A2: The nonparametric function a;(u),k = 1,...,q and &(v),k = 1,..., p; have a continuous
second derivative.

A3: The matrix E(XX'|U) is nonsingular for each U € U. All elements of the matrices E(XX'|U),
E(XXT|U)™! and E(XZT|U)™! are Lipschitz continuous.

A4: The kernel functions L(.) and ¢(.) are density functions with compact supports.

AS: There exists an s > 0 such that E|[X]||** < oo and for some r < 2 — s~! such that n*~'h — oo,

n* b, — oo and nhb} —» 0asn — oo,k =1,2,...,p.
A6: nh® — 0 and nh*/(logn)* — co.
A7: Let cy,...,ck be the interior knots on [0, 1]. Setcy = 0, cx+; = 1 and #; = ¢; — ¢;—1. Then,

there exists a constant Cy such that

s
maxthl _ o maxilhe — i) = oK.

min{#A;}
A8: F(x, z,u,h) and G(x, z, u, h) are continuous with respect to (x, z, #). In addition, F(x, z,u, h) <
0 for any 2 > 0.
A9: E(¢,()lx,z,u) = 0 and E(¢}/()*|x, z, u), E(¢}(¢)*|x, z,u) and E(¢}”(¢)lx, z, u) are continuous
with respect to x, z and u.
The following Theorem 1 gives the consistency of spline modal estimators 6 = (BT, 6™)" and
a(u),k=1,...,q.

Theorem 1. Suppose that the assumptions A1-A9 hold, and the number of knots K = O(n'/®"+V). Then
we have
DO = Ol| = Op(n~ ),
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(@Dl w) — an@ll = O, 71),k = 1,...,q.
The following Theorem 2 shows the asymptotic normality for the parameter estimator 0.
Let ®(U) = E(F(X, Z, U, hIIX"|U), and T(U) = E(F(X, Z, U, h)IIN"|U). Denote X(Z,X,U) =
X - o) T (U)II.

Theorem 2. Suppose that the assumptions Al-A9 hold, and the number of knots K = O(n'/?*Y), then

we have y
Vi@ - ©)) — NO,Z'Qx™),

where L = B(F(X, Z, U,))XX") and @ = B(G(X, Z, U, )XX") + BIS.BoB(F(X, Z, U, h)*E(XX")).
4. Bandwidth selection and estimation algorithm

In this section, we discuss the selection of bandwidth and estimation procedure based on the modal
expectation maximization(MEM) algorithm proposed by Li et al. [20].

4.1. Bandwidth selection in practice

In order to obtain the spline modal estimators ﬁ 6 and 7 by maximizing function (2.7), we need
to select an appropriate bandwidth 4 due to the fact that its value affects directly the robustness of the
estimators. According to the thought of Yao et al. [12], it is easy to show that the ratio of the asymptotic
variance of our proposed estimator to that of the least square B-spline estimator is given by

G(h)

R(h) = ————,
®) F?(h)6?

4.1
where F(h) = 1 37 ¢7(8), G(h) = L 30, 41,87, & = Y, — ETBO — WI'9© — T y?), the parameters
B9, 609 and y© are the initial estimators of the parametric vectors 8, 6 and y via the least square
estimation procedure, and 62 = 1 3| &2,

The optimal bandwidth £ is calculated by minimizing (4.1). In the actual calculation, we use the grid
search method to choose A, and the possible grids points for 2 canbe h = 0.56x1.02/, j = 0,1,...,100
(See Yao et al. [12] and Lv et al. [16]).

4.2. The MEM algorithm for parameters

In this subsection, the following modal expectation maximization(MEM) algorithm by Li et al. [20]
is adopted to obtain the estimators of the parameters @ and y. Let Q; = (é‘iT, winh', g =07, y").
Set 2@ = (@OT 4O "wwhere @ and ¢ are initial estimators of @ and vy, respectively with m = 0.
Step1.(E — step): We update n(i E(’")) by

on(Y; — QT E™) .
Y dn(Yi — QTEM)
Step2.(M — step): Update Z*D by

7(|E™) = 1,2,....n.

n

=D = argmax ) (n(iIE™) log ¢4(Y; - QI E))

i=1
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= (Q wQ)'Q"wY

where Q = (01,0,,....0)", Y = (Y.,Y,....,Y), w is n x n diagonal matrix with
w = diag(n(1|2™), 7(2|E™), . .., n(n|E™)).

Step3: Iterate the E-step and M-step until the algorithm converges. We denote the final estimator
of  as E. Then, the parameters for @ and y based on modal regression are @ = (I,x,,0,x,.)E and
¥ = (042xp, IqLXqL)é. Then, the corresponding estimator of a;(.) is &x(u) = Bw) yi, k=1,2,...,q.

5. Simulation studies

In this section, we conduct the following simulation to assess the finite sample performance of
the proposed estimation procedure. For this purpose, we consider the following varying-coefficient
partially linear model with error-prone linear covariates,

n; =&V +e, G-

{Y,. =B+ WO+ ZTa(U) + &
where the parametric vector 8 = (81,5,.83) = (3,1.8,0.8)", 8 = (0,,6,,65)" = (2,0.5,-1.5)7,
the nonparametric function a(U) = (a1 (U), ar(U)T with
a1 (U) = 3.5(exp(=(4U — 1)) + exp(=(4U — 3)*) — 1.5, a»(U) = cos(2nU) and U; ~ U(0, 1), the
covariates W; are multivariate normal distribution with mean 0 and covariance matrix X; = (07j)1<i j<3
with o;; = 0.5%= for i, j = 1,2,3 and the covariates Z; are multivariate normal distribution with mean
0 and covariance matrix X, = (07))1<i j<2 With ;; = 0.5/ for i, j = 1,2. The following three different
model errors: (1) the normal distribution: &; ~ N(0, 1); (2) the ¢ distribution: g; ~ #(3); (3) the mixed
normal distribution(MN): &; ~ 0.9N(0, 1) + 0.1N(0, 9°) are considered.

The variables &; in model (5.1) are the function of the auxiliary instrumental variables V;. It is noted
that &; are not observed, and the observed variables are i; with i; = §(V;) + e;, and &(V;) = Vi(1 = V),
&V = 2sin(Vy), &(V;) = 3V; — 2cos(V;) with V; ~ N(2, 1.5). Furthermore, the measurement error e;
is independent with V; and (W;, Z,, &;) and e; ~ N(0, I30%), where o2 = 0.4? and o> = 0.6 represent
the different level of the measurement error.

In the simulation experiments, we choose the Epanechnikov kernel function L(f) = %(1 — 1%),, the
bandwidth b = 6,n'/3 is adopted in local linear smoothing according to Zhou and Liang [6], where
J, 1s sample root variance of the variable V;. We use the standard normal density for ¢(¢) in the modal
regression and the bandwidth 4 is selected through minimizing (4.1). We use the cubic B-spline basis
function in our simulation. The sample size n is 100, 250 and 500, and run simulation is 200.

To evaluate the performance of the proposed estimation procedure in the parametric component, we
compared the modal regression (MR) estimators to the profile least squares (PLS) estimators proposed
by Zhou and Liang [6]. Three types of estimators include the naive estimators in which &; is simply
replaced by n; (denoted by MR-N and PLS-N), our proposed calibrated estimators (denoted by MR-C
and PLS-C), and the benchmark estimators which assumes that &; is known before (denoted by MR-B
and PLS-B). Tables 1-6 show the bias and standard deviation (denoted by SD in the brackets) of the
estimators of parameters 8 and 6.
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Table 1. The bias and SD of estimators for parameters with &; ~ N(0, 1) and o'g = 0.4%.

n

Method

Bi

B

Bs

0

)

03

100

250

500

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

0.0968(0.1254)
0.0873(0.1124)
0.0401(0.0535)
0.0981(0.1278)
0.0873(0.1120)
0.0403(0.0538)

0.0555(0.0697)
0.0491(0.0619)
0.0201(0.0247)
0.0555(0.0700)
0.0509(0.0635)
0.0198(0.0244)

0.0336(0.0414)
0.0331(0.0407)
0.0140(0.0185)
0.0356(0.0439)
0.0342(0.0430)
0.0140(0.0186)

0.4061(0.2673)
0.1989(0.2506)
0.0950(0.1176)
0.4060(0.2694)
0.1993(0.2508)
0.0959(0.1200)

0.4147(0.1537)
0.1223(0.1494)
0.0482(0.0630)
0.4146(0.1553)
0.1219(0.1496)
0.0481(0.0629)

0.4169(0.1076)
0.0794(0.0979)
0.0354(0.0446)
0.4160(0.1084)
0.0801(0.1002)
0.0355(0.0448)

0.0720(0.0932)
0.0676(0.0874)
0.0323(0.0420)
0.0732(0.0949)
0.0678(0.0877)
0.0326(0.0423)

0.0434(0.0531)
0.0415(0.0508)
0.0161(0.0197)
0.0430(0.0532)
0.0426(0.0522)
0.0160(0.0196)

0.0294(0.0362)
0.0285(0.0360)
0.0121(0.0156)
0.0284(0.0358)
0.0288(0.0365)
0.0120(0.0156)

0.2575(0.3178)
0.1366(0.1692)
0.0978(0.1220)
0.2566(0.3197)
0.1343(0.1673)
0.0978(0.1223)

0.1382(0.1738)
0.0704(0.0895)
0.0605(0.0764)
0.1389(0.1751)
0.0687(0.0879)
0.0606(0.0768)

0.0907(0.1138)
0.0430(0.0548)
0.0381(0.0479)
0.0917(0.1141)
0.0423(0.0538)
0.0380(0.0482)

0.2848(0.3505)
0.1514(0.1897)
0.1099(0.1383)
0.2898(0.3554)
0.1511(0.1887)
0.1091(0.1374)

0.1578(0.1991)
0.0806(0.1009)
0.0706(0.0863)
0.1592(0.1995)
0.0787(0.0985)
0.0703(0.0860)

0.0992(0.1327)
0.0522(0.0657)
0.0423(0.0529)
0.0990(0.1321)
0.0503(0.0636)
0.0422(0.0525)

0.2375(0.3044)
0.1310(0.1672)
0.1007(0.1258)
0.2386(0.3100)
0.1278(0.1646)
0.1012(0.1274)

0.1513(0.1844)
0.0672(0.0846)
0.0578(0.0728)
0.1522(0.1846)
0.0651(0.0827)
0.0577(0.0726)

0.0863(0.1102)
0.0474(0.0602)
0.0413(0.0501)
0.0866(0.1100)
0.0468(0.0595)
0.0409(0.0499)

Table 2. The bias and SD of estimators for parameters with &;

~ t(3) and o2

= 0.4°.

n

Method

B

B

B

0

0>

0;

100

250

500

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

0.1293(0.1696)
0.1235(0.1647)
0.0695(0.0971)
0.1243(0.1601)
0.1165(0.1539)
0.0575(0.0788)

0.0597(0.0799)
0.0587(0.0774)
0.0330(0.0438)
0.0590(0.0801)
0.0569(0.0771)
0.0271(0.0363)

0.0387(0.0502)
0.0391(0.0501)
0.0247(0.0330)
0.0372(0.0482)
0.0369(0.0482)
0.0183(0.0237)

0.4702(0.3694)
0.2756(0.3634)
0.1596(0.2031)
0.4601(0.3593)
0.2559(0.3449)
0.1289(0.1646)

0.4552(0.1749)
0.1463(0.1822)
0.0900(0.1133)
0.4515(0.1737)
0.1392(0.1740)
0.0720(0.0891)

0.4226(0.1295)
0.0990(0.1209)
0.0620(0.0783)
0.4217(0.1235)
0.0895(0.1131)
0.0447(0.0562)

0.0974(0.1255)
0.0933(0.1222)
0.0523(0.0724)
0.0952(0.1203)
0.0866(0.1140)
0.0435(0.0583)

0.0492(0.0631)
0.0460(0.0598)
0.0275(0.0371)
0.0465(0.0607)
0.0445(0.0580)
0.0219(0.0289)

0.0314(0.0403)
0.0319(0.0410)
0.0211(0.0271)
0.0311(0.0392)
0.0307(0.0391)
0.0153(0.0195)

0.2974(0.3728)
0.2064(0.2619)
0.1894(0.2359)
0.2863(0.3609)
0.1701(0.2162)
0.1407(0.1771)

0.1725(0.2117)
0.1183(0.1503)
0.1107(0.1417)
0.1680(0.2030)
0.0978(0.1222)
0.0873(0.1085)

0.1189(0.1520)
0.0766(0.0984)
0.0725(0.0923)
0.1149(0.1455)
0.0576(0.0723)
0.0523(0.0642)

0.3108(0.3959)
0.2196(0.2780)
0.1943(0.2477)
0.3063(0.3919)
0.1994(0.2512)
0.1611(0.2071)

0.1855(0.2373)
0.1274(0.1622)
0.1150(0.1464)
0.1803(0.2276)
0.1064(0.1323)
0.0936(0.1136)

0.1288(0.1676)
0.0791(0.1034)
0.0795(0.1029)
0.1270(0.1609)
0.0602(0.0726)
0.0575(0.0708)

0.3037(0.3752)
0.1866(0.2446)
0.1636(0.2198)
0.2907(0.3620)
0.1656(0.2151)
0.1387(0.1799)

0.1416(0.1792)
0.0930(0.1172)
0.0906(0.1147)
0.1401(0.1754)
0.0786(0.0967)
0.0763(0.0932)

0.1196(0.1506)
0.0732(0.0926)
0.0707(0.0887)
0.1140(0.1440)
0.0563(0.0695)
0.0549(0.0658)
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Table 3. The bias and SD of estimators for parameters with &; ~ 0.9N(0, 1) +0.1N(0,9?) and

o2 =04%

n

Method

Bi

B

B3

0

)

03

100

250

500

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

0.0892(0.1162)
0.0880(0.1111)
0.0481(0.0607)
0.0912(0.1196)
0.0894(0.1142)
0.0485(0.0619)

0.0530(0.0678)
0.0494(0.0639)
0.0257(0.0332)
0.0534(0.0683)
0.0509(0.0650)
0.0256(0.0331)

0.0356(0.0447)
0.0358(0.0472)
0.0183(0.0232)
0.0351(0.0444)
0.0361(0.0474)
0.0184(0.0232)

0.4152(0.2756)
0.2164(0.2648)
0.1223(0.1553)
0.4180(0.2790)
0.2174(0.2669)
0.1261(0.1587)

0.4115(0.1638)
0.1367(0.1542)
0.0633(0.0806)
0.4126(0.1653)
0.1245(0.1533)
0.0628(0.0796)

0.4292(0.1118)
0.0938(0.1208)
0.0467(0.0587)
0.4283(0.1116)
0.0937(0.1208)
0.0466(0.0584)

0.0736(0.0929)
0.0723(0.0895)
0.0387(0.0494)
0.0750(0.0952)
0.0740(0.0918)
0.0391(0.0502)

0.0453(0.0561)
0.0413(0.0513)
0.0213(0.0262)
0.0458(0.0567)
0.0419(0.0519)
0.0210(0.0259)

0.0294(0.0365)
0.0292(0.0375)
0.0147(0.0183)
0.0291(0.0363)
0.0294(0.0377)
0.0147(0.0183)

0.2603(0.3168)
0.1606(0.1992)
0.1322(0.1674)
0.2612(0.3159)
0.1583(0.1966)
0.1318(0.1681)

0.1524(0.1866)
0.0823(0.1056)
0.0719(0.0914)
0.1511(0.1863)
0.0802(0.1028)
0.0720(0.0914)

0.1121(0.1379)
0.0641(0.0794)
0.0566(0.0713)
0.1114(0.1369)
0.0639(0.0790)
0.0572(0.0717)

0.2910(0.3690)
0.1714(0.2129)
0.1460(0.1791)
0.2906(0.3706)
0.1695(0.2093)
0.1427(0.1771)

0.1593(0.1966)
0.1001(0.1214)
0.0870(0.1089)
0.1628(0.1999)
0.0972(0.1198)
0.0861(0.1087)

0.1210(0.1494)
0.0728(0.0882)
0.0651(0.0799)
0.1200(0.1488)
0.0722(0.0877)
0.0649(0.0798)

0.2545(0.3084)
0.1411(0.1759)
0.1230(0.1534)
0.2549(0.3085)
0.1397(0.1728)
0.1229(0.1539)

0.1501(0.1845)
0.0858(0.1080)
0.0726(0.0919)
0.1506(0.1855)
0.0835(0.1059)
0.0732(0.0928)

0.1116(0.1416)
0.0573(0.0706)
0.0570(0.0700)
0.1118(0.1412)
0.0574(0.0710)
0.0566(0.0697)

Table 4. The bias and SD of estimators for parameters with &; ~ N(0, 1) and o2 = 0.6%.

n

Method

Bi

B2

B3

0

)

03

100

250

500

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

0.1217(0.1674)
0.1211(0.1618)
0.0404(0.0527)
0.1215(0.1687)
0.1204(0.1626)
0.0400(0.0522)

0.0683(0.0862)
0.0632(0.0757)
0.0223(0.0288)
0.0729(0.0918)
0.0633(0.0755)
0.0221(0.0287)

0.0498(0.0621)
0.0441(0.0556)
0.0134(0.0173)
0.0521(0.0660)
0.0444(0.0559)
0.0136(0.0175)

0.8211(0.3693)
0.3084(0.3572)
0.1000(0.1244)
0.8229(0.3756)
0.3057(0.3604)
0.1002(0.1250)

0.8608(0.2111)
0.1773(0.1828)
0.0572(0.0730)
0.8556(0.2181)
0.1805(0.1825)
0.0579(0.0733)

0.8526(0.1587)
0.1301(0.1288)
0.0341(0.0443)
0.8482(0.1621)
0.1312(0.1293)
0.0342(0.0446)

0.1017(0.1307)
0.0985(0.1255)
0.0308(0.0400)
0.1014(0.1314)
0.0993(0.1265)
0.0305(0.0395)

0.0558(0.0702)
0.0512(0.0625)
0.0185(0.0234)
0.0592(0.0742)
0.0504(0.0621)
0.0185(0.0233)

0.0425(0.0524)
0.0369(0.0462)
0.0108(0.0140)
0.0445(0.0545)
0.0373(0.0463)
0.0110(0.0142)

0.3291(0.4148)
0.1615(0.2025)
0.1117(0.1383)
0.3309(0.4147)
0.1579(0.2001)
0.1144(0.1410)

0.2053(0.2566)
0.0893(0.1089)
0.0619(0.0771)
0.2065(0.2597)
0.0862(0.1060)
0.0619(0.0766)

0.1469(0.1885)
0.0539(0.0687)
0.0425(0.0544)
0.1461(0.1892)
0.0520(0.0659)
0.0425(0.0547)

0.3761(0.4737)
0.2043(0.2483)
0.1234(0.1538)
0.3833(0.4790)
0.1960(0.2375)
0.1236(0.1539)

0.2269(0.2799)
0.0997(0.1238)
0.0686(0.0902)
0.2274(0.2810)
0.0937(0.1191)
0.0688(0.0901)

0.1590(0.1984)
0.0596(0.0743)
0.0432(0.0547)
0.1608(0.2009)
0.0553(0.0704)
0.0428(0.0545)

0.3621(0.4432)
0.1738(0.2214)
0.1090(0.1354)
0.3675(0.4441)
0.1669(0.2099)
0.1093(0.1359)

0.2065(0.2601)
0.0932(0.1136)
0.0675(0.0833)
0.2081(0.2587)
0.0890(0.1100)
0.0684(0.0841)

0.1416(0.1750)
0.0522(0.0651)
0.0396(0.0496)
0.1427(0.1766)
0.0504(0.0616)
0.0393(0.0496)
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Table 5. The bias and SD of estimators for parameters with &; ~ #(3) and 0'3

= 0.6%.

n

Method

Bi

B2

Bs

0

0,

03

100

250

500

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

0.1384(0.1850)
0.1410(0.1865)
0.0626(0.0852)
0.1383(0.1879)
0.1364(0.1803)
0.0517(0.0678)

0.0758(0.0989)
0.0715(0.0970)
0.0345(0.0457)
0.0794(0.1009)
0.0706(0.0945)
0.0282(0.0369)

0.0576(0.0726)
0.0528(0.0659)
0.0201(0.0269)
0.0569(0.0734)
0.0521(0.0649)
0.0157(0.0202)

0.9086(0.4104)
0.3495(0.4005)
0.1594(0.2041)
0.9015(0.4100)
0.3319(0.4000)
0.1249(0.1612)

0.8488(0.2265)
0.1893(0.2166)
0.0867(0.1080)
0.8474(0.2279)
0.1882(0.2129)
0.0663(0.0859)

0.8684(0.1735)
0.1501(0.1497)
0.0561(0.0714)
0.8616(0.1718)
0.1430(0.1466)
0.0412(0.0534)

0.1090(0.1430)
0.1003(0.1405)
0.0497(0.0647)
0.1087(0.1442)
0.1002(0.1401)
0.0403(0.0515)

0.0576(0.0752)
0.0558(0.0737)
0.0294(0.0378)
0.0587(0.0746)
0.0544(0.0712)
0.0240(0.0304)

0.0498(0.0608)
0.0445(0.0543)
0.0173(0.0227)
0.0486(0.0605)
0.0434(0.0531)
0.0134(0.0170)

0.3517(0.4390)
0.2166(0.2795)
0.1716(0.2279)
0.3507(0.4361)
0.1924(0.2482)
0.1432(0.1872)

0.2146(0.2580)
0.1046(0.1289)
0.0922(0.1112)
0.2121(0.2554)
0.0896(0.1150)
0.0714(0.0871)

0.1636(0.2044)
0.0827(0.0993)
0.0715(0.0860)
0.1616(0.2011)
0.0638(0.0790)
0.0518(0.0642)

0.3971(0.5007)
0.2469(0.3142)
0.1822(0.2269)
0.3932(0.4986)
0.2105(0.2742)
0.1517(0.1866)

0.2090(0.2628)
0.1225(0.1543)
0.1137(0.1436)
0.2071(0.2591)
0.1037(0.1317)
0.0893(0.1107)

0.1627(0.2072)
0.0904(0.1149)
0.0795(0.1010)
0.1583(0.2025)
0.0734(0.0948)
0.0588(0.0760)

0.3568(0.4438)
0.1964(0.2492)
0.1483(0.1881)
0.3649(0.4525)
0.1820(0.2244)
0.1207(0.1545)

0.2111(0.2694)
0.1192(0.1493)
0.1101(0.1387)
0.2104(0.2671)
0.0949(0.1224)
0.0835(0.1045)

0.1606(0.1995)
0.0814(0.1020)
0.0706(0.0904)
0.1570(0.1957)
0.0610(0.0770)
0.0509(0.0653)

Table 6. The bias and SD of estimators for parameters with ; ~ 0.9N(0, 1) +0.1N(0,9?) and

o2 =0.6%

n

Method

Bi

B2

B3

0

)

03

100

250

500

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

PLS-N
PLS-C
PLS-B
MR-N
MR-C
MR-B

0.1450(0.1896)
0.1380(0.1807)
0.0482(0.0635)
0.1446(0.1895)
0.1367(0.1818)
0.0485(0.0636)

0.0748(0.0947)
0.0705(0.0927)
0.0259(0.0320)
0.0745(0.0948)
0.0739(0.0953)
0.0259(0.0319)

0.0508(0.0625)
0.0444(0.0570)
0.0181(0.0231)
0.0507(0.0625)
0.0422(0.0561)
0.0181(0.0231)

0.8040(0.3938)
0.3125(0.3985)
0.1215(0.1497)
0.8032(0.3971)
0.3082(0.3990)
0.1210(0.1503)

0.8816(0.2180)
0.1883(0.2257)
0.0698(0.0886)
0.8796(0.2183)
0.1846(0.2228)
0.0692(0.0883)

0.8576(0.1426)
0.1320(0.1548)
0.0462(0.0577)
0.8534(0.1428)
0.1316(0.1522)
0.0434(0.0540)

0.1147(0.1464)
0.1115(0.1423)
0.0396(0.0500)
0.1144(0.1463)
0.1114(0.1423)
0.0397(0.0502)

0.0599(0.0768)
0.0583(0.0760)
0.0204(0.0253)
0.0595(0.0763)
0.0509(0.0747)
0.0205(0.0253)

0.0385(0.0479)
0.0378(0.0475)
0.0152(0.0191)
0.0381(0.0477)
0.0400(0.0493)
0.0145(0.0182)

0.3471(0.4449)
0.1928(0.2454)
0.1493(0.1915)
0.3529(0.4570)
0.1912(0.2449)
0.1497(0.1925)

0.1931(0.2383)
0.1005(0.1260)
0.0825(0.1023)
0.1928(0.2384)
0.0965(0.1215)
0.0829(0.1025)

0.1423(0.1796)
0.0650(0.0818)
0.0555(0.0684)
0.1433(0.1809)
0.0648(0.0814)
0.0470(0.0600)

0.4040(0.4977)
0.2038(0.2620)
0.1373(0.1706)
0.4026(0.5025)
0.1997(0.2536)
0.1373(0.1701)

0.2098(0.2724)
0.1055(0.1341)
0.0815(0.1028)
0.2123(0.2748)
0.1013(0.1277)
0.0808(0.1019)

0.1671(0.2068)
0.0730(0.0891)
0.0616(0.0778)
0.1662(0.2057)
0.0705(0.0868)
0.0582(0.0733)

0.3230(0.4182)
0.1786(0.2295)
0.1261(0.1580)
0.3301(0.4231)
0.1748(0.2230)
0.1278(0.1588)

0.2029(0.2583)
0.0990(0.1251)
0.0753(0.0938)
0.2066(0.2606)
0.0941(0.1200)
0.0759(0.0945)

0.1374(0.1751)
0.0581(0.0748)
0.0605(0.0768)
0.1376(0.1747)
0.0570(0.0743)
0.0554(0.0684)
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According to Tables 1-6, we draw the following conclusions: (1) The estimators of parameters are
obtained under six estimation approaches. Their bias and SD become smaller with the increasing of
the sample size in all situations. This indicates that all estimation procedures are reasonable. (2) The
bias and SD of the PLS estimator are smaller than MR estimator while the model error yielding to
normal distribution. However, when the model error is the ¢ or MN distribution, the proposed MR
estimator gives smaller bias and SD than the PLS estimator. It illustrates that the PLS estimator is
sensitive to the non normal distributed model error. (3) Compared the estimators among MR-N, MR-C
and MR-B, we find that our proposed MR-C estimator is superior to MR-N estimator and it performs
just a little bit worse than MR-B. And the PLS-C estimator has the similar performance to the MR-C
estimator, which demonstrates that it is necessary to calibrate measurement errors in the calculation
and we should not ignore the effect of the measurement errors. (4) Given the sample size, with the
increase of the measurement error, the SD of PLS-C and MR-C become smaller. This reveals that the
calibration of the error-prone covaritates is effective.

Furthermore, to evaluate the estimation results on the nonparametric functions, we present the
fitting curve of @, (u) and a,(u). Figures 1 and 2 show the plot of estimated curve with the dotted, the
dashed and the solid lines which denote the PLS-C estimator, MR-C estimator and the real function,
respectively. We only give the results of the measurement error o2 = 0.4% and o> = 0.6° under
n = 250 with model error &; ~ #(3). From Figures 1 and 2, we can see that two estimation procedures
of PLS-C and MR-C estimator are all closed to the real curve, and the MR-C is much closer to the
real curve. This indicates that our proposed estimation procedure is more robust when the data
follows non normal distributions.

(V)

(V)
05 1.0 15 2.0
L

0.0
I

Figure 2. The estimated curves of the nonparametric functions with #(3) and o2 = 0.6%.

In addition, we apply the root of mean square error(RMSE) to illustrate the effectiveness of the

AIMS Mathematics Volume 8, Issue 8, 18373—-18391.
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nonparametric estimators, and the form of the RMSE is

2 M
RMSE = \| < 5" 3 lau) — a )P,
j=1 i=1
where M = 200, u; is the equidistant points on (0, 1). The boxplots of the RMSE for the nonparametric
functions are given in Figures 3 and 4 by PLS-C and MR-C estimators when the measurement error is
o2 = 0.4% and o2 = 0.6, respectively, and the sample size n = 250 and n = 500 under the model error
&; ~ 1(3). From Figures 3 and 4, the MR-C estimator performs smaller RMSE than PLS-C estimator. It
further confirms that our proposed estimation procedure is robust when the model error is non normal.

Meanwhile, the RMSEs of two procedures are decreasing as the sample size increases.

RMSE
0.000 0005 0010 0.015 0.020
I
RMSE
0.000 0005 0010 0015 0.020
I

PLS-C MR-C PLS-C MR-C

Figure 3. The boxplots of the RMSE for the nonparametric functions with o2 = 0.4?(left)
and o2 = 0.6%(right) under n = 250.

0.015
I
0.015
I

1

PLS-C MR-C PLS-C MR-C

0.010
I
0.010
I

ﬂg
|

RMSE
RMSE

0.005
I

0.000
I
0.000
I

Figure 4. The boxplots of the RMSE for the nonparametric functions with o = 0.4%(left)
and o2 = 0.6*(right) under n = 500.

6. A real example

We adopt a diabetes data to our proposed estimation procedure in this section. The data set
contains 10 baseline variables, including age, sex, body mass index, average blood pressure, six blood
serum measurements obtained from 442 observations, and the response of interest, a quantitative
measurement of disease progression 1 year after baseline. A detailed description of each variable can
be seen by Efron et al. [21]. Similar to Sun et al. [11], the following varying-coefficient partially
linear measurement error model is given as

Y=EB+WO+Z"a(U) +&. (6.1)

AIMS Mathematics Volume 8, Issue 8, 18373—-18391.
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Low-density level (1dl) and high-density level(hdl) are the covariates & which are measured with error.
The exactly observed covariates W are triglycerides(tc), total cholesterol(tch) and tension glaucoma
level(ltg). The covariates Z are the glucose concentration(glu) and average blood pressure(bp) and the
variable U is age. Further, the variable body mass index(bmi) is considered as the auxiliary
instrumental variable V.

We presented two methods with PLS-C and IMR-C to estimate parameter and nonparametric
functions in model (6.1). The parametric estimating results are given in Table 7. From Table 7, the
calibrated methods based on auxiliary instrumental variables are available in practice and the
parametric estimators with PLS-C and MR-C have similar effects on response variable. In addition,
the fitting curves of the coefficient functions are given in Figure 5, where the solid line and the dashed
line describe the PLS-C method and the MR-C method, respectively. From Figure 5, we can see that
the fitting trend of the nonparametric functions with PLS-C is close to MR-C. In a word, our proposed
estimation procedures are effective in both parametric and nonparametric aspects.

Table 7. The estimators of the parameters 8 and € in real example.

:él B2 é)l éz 65
PLS-C 0.0513 -12.4701 -3.4992 2.3424 8.0382
MR-C -0.0196 -12.4499 -3.5284 2.2832 8.1563

-0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10

Figure 5. The fitting curves of the nonparametric functions for @(.) and a;(.).

7. Conclusions

We have presented a robust estimation procedure for varying-coeflicient partially linear model when
some covariates in parametric part are error-prone. We assume that some linear covariates in the
model can not be observed directly, and do not specify the model structure of measurement error.
Firstly, we calibrate the covariates with the auxiliary instrumental variable by the local linear smoothing
technique. Then with the B-spline basis function and modal regression, the components of parameters
and coeflicient functions are simultaneously estimated. The proposed estimation procedure not only
can attenuate the effect of the measurement errors, but also is robust against outliers or heavy-tail
distributed data. Under some mild conditions, the consistency and the asymptotic normality of the
resulting estimators are established. We also give the strategy to choose optimal bandwidth and specific
algorithm in practice. Some simulation studies and a real data analysis are carried out to demonstrate

AIMS Mathematics Volume 8, Issue 8, 18373—-18391.
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the proposed estimation methods are satisfactory.
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Appendix: Proofs of theorems

Lemma 1. Under the Assumptions of the theoretical properties in Section 3, we have

2 HLy .2), N2 1 < , logh!
G0 =600 = FE O+ s D (V= Ve +olb] + ~ )
P k

uniformly on v € V, where V is the compact support of v and ey, is the kth entry of e;. p, = f V2 L(v)dv
and fy(v) is the density function of V.

Proof. This result is directly followed by Zhou and Liang [6]. O
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Proof of Theorem 1. Let 6 = n"/®*V._ Define @ = @y+6v; and y = yo+6vp, and v = (v, v1)T, where
Q) = (B],6])" and y, are the true values of @ and y, v, and v, are vector with p and gL dimension,
respectively.

We show that, for any given & > 0, there exists a large enough constant C such that

P{sup 1(©,y) < L(®g,y0)} < 1 - &, (7.1)
lIvll=C
where (0, v) is defined in (2.7).
Let Ri(u) = ay(w)—Bu)" yor, R(u) = (Ry(u), Ry(w), . .., R,(u))". Adopting Taylor expansion to (2.7),
we have

n

D 08+ ZIRWU) + (& - &) BX] v +TI]'v)

i=1

i’(G)’ 7) - Z\’((')0’ 70)

1 - ’’ & %
+ 5 2 O+ ZIRW) + &= &) B X[ vi + I v)?
i=1

1 < " O
-z Z‘ 8¢ (X vy + Ty,
= Ji+Hh+/; (7.2)
where X; = (£7, WD), £ lies in &;+ZT R(U)+(&—£)" Bo and &+ ZT R(U)+(&~E&) Bo—0(X v, +1T7 v,).

Using Taylor expanding J; around ¢;, we have

No= 6 ) 1di(e) + ¢ (E)ZI RWUY + ¢ (e)(& — €)"Bo

i=1

0/ (EDIZTRWU) + (& — &) BoP)XT vy + I vy) 73)

where &' is between &; and &; + ZT R(U;) + (& — €)' o.
By Corollary 6.21 in Schumaker [19], we have [|[R(U))|| = O,(K™") = 0,(5). In addition, é‘i is the
local linear estimators of &;, invoking condition A5 and A9 and the simple calculation yields

Ji = 0,(nsK VIl = O,(n&*|IvI]). (7.4)
Similarly, we also have
J» = E(F(X, Z, U, ))0,(né”|IVIP). (7.5)

Therefore, by choosing a sufficient large C, J, dominates J; uniformly ||v|| = C. Similarly, we can
prove that J; = O,(né*||v|*). Since § — 0, it follows that &||v|| — 0 with [[v]| = C, which lead to
J3 = 0,(J»). Therefor, J3 is also dominated by J, in ||v]| = C.

Hence, Eq (7.1) holds and there exists local maximizers ® and ¥ such that ||(:) — Ol| = 0,(6) and
I = voll = O,(6). This completes the proof of part (i) in Theorem 1.

1
1k (u) — eI = fo (Bw) § — ar(u))*du
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1
f [B)'$: — Bw) yox — Ru(u)du
0

IA

1 1
> f (B s — yooPdu +2 f Ru(uydu
0 0

1
23k — yo) "H@x — you) + Zf Ri(u)’du (7.6)
0
where H = [ Bu)Bw)" du.

Then invoking |[H|| = O(1) and |Iy — yoll = 0,(6), we have (Fx — yo) " HFx — you) = 0,(6%).
Moreover, we can get that fol Ri(u)*du = 0,(6%). Then || (u) — an(w)ll = 0,(6) is obtained. This
completes the Theorem 1. O

Proof of Theorem 2. Since (ﬁ, 0, ¥) is the solution of maximizing the objective function (2.7), we have

0Z‘(®’ 7) C ’ &T [ 0 3
_Wlﬁ):@,y:f/ = Z:‘ Xipp(Yi — szﬂ - WiTG - HiTV) =0
(7.7)
and
8i4(®’ Y) - ’ 2T D 0 IS
—Tb:@,y:y = Z Mg, (Y =&/ B-Wi0-11[9) = 0.
i=1
(7.8)
Note that
Y- &p-Wo-ny
= & +& (Bo-B)+ W (0 —0)+T] (o - )
+ (E-E)'Bo+ (E—E) Bo—P)+Z]RWU).
(7.9)
Thus, from (7.9) and Taylor expression, we have
¢ (Yi— & B-W[-T1T9)
= @& + " (€)E Bo = B) + dn” (e)W] (80 — 8) + ¢ ()TN} (o — 9)
+ ¢ (&) & — &) Bo+ & (e)Z] R(U;) + 0,(1). (7.10)

Thus, from Lemma A.1 and (7.10), we can obtain that (7.8) has the following asymptotic expression,
P 1 - 7 0 1 C ”
V(B - Bo)- > & (EDE T + V(@ - 80)— > ¢y ()W TI;
a3 e
. 1 n .,
+ NG = 70)- > e (eI T,
n i=1
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1 \ 4 1 C ” 1 & 7
= % ; ¢p' (e)II; + W Z‘ ¢n()ZI R(UNIL, + % ; Bib g, 12¢)" (£)EP (VHI,

1 n B 1 n B
+ =D @M D BLI VOL(V; = Ve + 0,(1). (7.11)
i=1 =1
By the condition A2 and A6, and some calculations based on (7.11), it follows that
¥ =0 = [Tn + 0,(D]' (A, — ©u(O - Oy)), (7.12)
where
r,= lzn: ¢ ()L, @, = lzn: ¢/ (eI X!
n n L h 1 ey ) n n L h 1 14X 9
1 n , n ~
v == > TG e + 61" @I ZIRWD) + B s, /267 (V) + 3 By f (VOLu(V; = Ve 1)
=1

i=1

Then, by the law of large numbers, we have I, s Iand o0, N ®, where I' = E[F(X, Z, U, h)IIII"]
and ® = E[F(X, Z, U, hHIIXT].
Substituting (7.12) into (7.7), and similar to (7.11), we obtain that

% > #(e)Xi(X, - O, 'O - ©y)
i=1
1 v X
= = > Xil#i(e) + $()ZIRWU) = ¢/ M [T+ 0,(D] Ay + 66— €)' Bol.
i=1

(7.13)

Note that
1 n
= > G )DL (X, — O T, =0
n i=1
and
1 C — ’ 144 — 2
~ D O T ) + 67/ () 2T R ~ TTT, A, + (6~ €)7ol = 0.
i=1
LetX; =X, - @,{F;lﬂi, (7.13) can be expressed by
1 <& .. .
- (&)X X +0,(1 0-0
[n;m(s) [ +0,(D] Vi(© - ©))
1 ¢ .1 < 3
= —F= f Ej Xi + — v &E; XIZ;TR Ui
W;M ) \/ﬁ;@,( ) Uy
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1 Y " X - 1 C 77 U ~
- W ; ¢h (8i)XiH1TFn]An + % ; ¢h (Si)Xi(fi — é:i)TﬁO + Op(l)

= L+5L+5L+14.

(7.14)

Since L 7L, ¢ (e)XM] = 1 30 ¢ (e)XiMl! — OIT 'L 30 ¢ (e)ILI! = 0, then I3 = 0. Together

n-n npn

with [|[R(U;)|| = O(K™) = o(1), a simple calculation yields I, = 0,(1).

For 14,

_ \/ﬁbzﬂLz O g " T #(2)
I = T;xi¢h<si)ﬂof (V)

+

|
=5 2. 2, K By (VOLu(V; = Vi,

i=1 j=1

= Iy + Ipo.

As nb* — 0, we have I, = 0,(1). Then through the similar argument of Zhang et al. [9], we have

1 © ~
Ip = % ; E(Xi)rzb},'(si)ﬂgei-

Then, (7.14) can be written as

1 © Y N
p Z ¢ (e)XiX] Vn(0® — )
P

1 © . 1 & B A
Y Z $nenXi + v Z &7 (e)Xi(& — E) Bo + 0,(1). (7.15)
i=1 i=1

By the Slutsky’s theorem and (7.15), it follows that

Vi@ — 9y -5 N0, =z

where @ = B(G(X,Z, U, )XX") + BIY BE(F(X, Z, U, h)*E(XX")). This completes the proof of

Theorem 2.
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