Nonlinear matrix equation often arises in control theory, statistics, dynamic programming, ladder networks, and so on, so it has widely applied background. In this paper, the nonlinear matrix equation $ X^{s}+A^{H}F(X)A = Q $ are discussed, where operator $ F $ are defined in the set of all $ n\times n $ positive semi-definite matrices, and $ Q $ is a positive definite matrix. Sufficient conditions for the existence and uniqueness of a positive semi-definite solution are derived based on some fixed point theorems. It is shown that under suitable conditions an iteration method converges to a positive semi-definite solution. Moreover, we consider the perturbation analysis for the solution of this class of nonlinear matrix equations, and obtain a perturbation bound of the solution. Finally, we give several examples to show how this works in particular cases, and some numerical results to specify the rationality of the results we have obtain.
Citation: Yajun Xie, Changfeng Ma, Qingqing Zheng. On the nonlinear matrix equation $ X^{s}+A^{H}F(X)A = Q $[J]. AIMS Mathematics, 2023, 8(8): 18392-18407. doi: 10.3934/math.2023935
Nonlinear matrix equation often arises in control theory, statistics, dynamic programming, ladder networks, and so on, so it has widely applied background. In this paper, the nonlinear matrix equation $ X^{s}+A^{H}F(X)A = Q $ are discussed, where operator $ F $ are defined in the set of all $ n\times n $ positive semi-definite matrices, and $ Q $ is a positive definite matrix. Sufficient conditions for the existence and uniqueness of a positive semi-definite solution are derived based on some fixed point theorems. It is shown that under suitable conditions an iteration method converges to a positive semi-definite solution. Moreover, we consider the perturbation analysis for the solution of this class of nonlinear matrix equations, and obtain a perturbation bound of the solution. Finally, we give several examples to show how this works in particular cases, and some numerical results to specify the rationality of the results we have obtain.
[1] | S. M. El-Sayed, A. C. M. Ran, On an iteration method for solving a class of nonlinear matrix equations, SIAM J. Matrix Anal., 23 (2002), 632–645. https://doi.org/10.1137/S0895479899345571 doi: 10.1137/S0895479899345571 |
[2] | Q. Li, P. P. Liu, Positive definite solutions of a kind of nonlinear matrix equations, J. Inform. Comput. Sci., 7 (2010), 1527–1533. |
[3] | A. C. M. Ran, M. C. B. Reurings, On the nonlinear matrix equation $X + A^{H}F(X)A = Q$ solution and perturbation theory, Linear Algebra Appl., 346 (2002), 15–26. https://doi.org/10.1016/S0024-3795(01)00508-0 doi: 10.1016/S0024-3795(01)00508-0 |
[4] | B. Meini, Efficient computation of the extreme solutions of $X + A^{H}X^{-1}A = Q$ and $X-A^{H}X^{-1}A = Q$, Math. Comp., 71 (2002), 1189–1204. |
[5] | I. G. Ivanov, V. I. Hassanov, B. V. Minchev, On matrix equations $X \pm A^{H}X^{-2}A = I $, Linear Algebra Appl., 326 (2001), 27–44. |
[6] | I. G. Ivanov, S. M. El-Sayed, Properties of positive definite solutions of the equation $X+A^{H}X^{-2}A = I$, Linear Algebra Appl., 297 (1998), 303–316. https://doi.org/10.1016/S0024-3795(98)00023-8 doi: 10.1016/S0024-3795(98)00023-8 |
[7] | Y. T. Yang, The iterative method for solving nonlinear matrix equation $X^{s}+ A^{H}X^{-t}A = Q$, Appl. Math. Comput., 188 (2007), 46–53. https://doi.org/10.1016/j.amc.2006.09.085 doi: 10.1016/j.amc.2006.09.085 |
[8] | X. G. Liu, H. Gao, On the positive definite solutions of the matrix equation$X^{s}\pm A^{\top}X^{-t}A = I_{n}$, Linear Algebra Appl., 368 (2003), 83–97. https://doi.org/10.1016/S0024-3795(02)00661-4 doi: 10.1016/S0024-3795(02)00661-4 |
[9] | X. F. Duan, A. Liao, B. Tang, On the nonlinear matrix equation $X-\sum_{i = 1}^{m}A_{i}^{H}X^{\delta_{i}}A_{i} = Q$, Linear Algebra Appl., 429 (2008), 110–121. https://doi.org/10.1016/j.laa.2008.02.014 doi: 10.1016/j.laa.2008.02.014 |
[10] | X. F. Duan, A. Liao, On the existence of Hermitian positive definite solutions of the matrix equation $X^s+A^{H}X^{-t}A = Q$, Linear Algebra Appl., 429 (2008), 673–687. https://doi.org/10.1016/j.laa.2008.03.019 doi: 10.1016/j.laa.2008.03.019 |
[11] | W. Kulpa, The Schauder fixed point theorem, Acta Univ. Carol., Math. Phys., 38 (1997), 39–44. |
[12] | M. Parodi, La Localisation Des Valeurs Caracterisiques Des Matrices Etses Applications, Paris: Gauthier-Villars, 1959. |
[13] | R. Bhatia, Matrix Analysis, New York: Springer-Verlag, 1997. https://doi.org/10.1007/978-1-4612-0653-8 |
[14] | V. I. Istratescu, Fixed Point Theorem, Mathematics and Its Applications, Dordrecht: Reidel, 1981. |
[15] | A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, Cambridge: Cambridge University Press, 1993. |
[16] | J. C. Engwerda, A. C. M. Ran, A. L. Rijkeboer, Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X + A^{H}X^{ -1}A = Q$, Linear Algebra Appl., 186 (1993), 255–275. https://doi.org/10.1016/0024-3795(93)90295-Y doi: 10.1016/0024-3795(93)90295-Y |
[17] | A. Ferrante, B. C. Levy, Hermitian solutions of the equation $X = Q+NX^{-1}N^{H}$, Linear Algebra Appl., 247 (1996), 359–373. https://doi.org/10.1016/0024-3795(95)00121-2 doi: 10.1016/0024-3795(95)00121-2 |
[18] | C. H. Guo, P. Lancaster, Iterative solution of two matrix equations, Math. Comput., 68 (1999), 1589–1603. |
[19] | S. F. Xu, On the maximal solution of the matrix equation $X+A^{T} X^{-1}A = I$, Acta Sci. Natur. Univ. Pekinensis, 36 (2000), 29–38. |
[20] | X. Zhan, J. Xie, On the matrix equation $X + A^{T} X^{-1}A = I$, Linear Algebra Appl., 247 (1996), 337–345. https://doi.org/10.1016/0024-3795(95)00120-4 doi: 10.1016/0024-3795(95)00120-4 |
[21] | C. H. Guo, Y. C. Kuo, W. W. Lin, Numerical solution of nonlinear matrix equations arising from Green's function calculations in nano research, J. Comput. Appl. Math., 236 (2012), 4166–4180. https://doi.org/10.1016/j.cam.2012.05.012 doi: 10.1016/j.cam.2012.05.012 |
[22] | E. K. W. Chu, H. Y. Fan, W. W. Lin, C. S. Wang, A structure-preserving doubling algorithm for periodic discrete-time algebraic Riccati equations, Int. J. Control, 77 (2004), 767–788. https://doi.org/10.1080/00207170410001714988 doi: 10.1080/00207170410001714988 |
[23] | C. H. Guo, Newton's method for discrete algebraic Riccati equations when the closed-loop matrix has eigenvalues on the unit circle, SIAM J. Matrix Anal. Appl., 20 (1998), 279–294. https://doi.org/10.1137/S0895479897322999 doi: 10.1137/S0895479897322999 |
[24] | P. C. Y. Weng, E. K. W. Chu, Y. C. Kuo, W. W. Lin Solving large-scale nonlinear matrix equations by doubling, Linear Algebra Appl., 439 (2013), 914–932. https://doi.org/10.1016/j.laa.2012.08.008 doi: 10.1016/j.laa.2012.08.008 |
[25] | C. Y. Chiang, E. K. Wan Chu, C. H. Guo, T. M. Huang, W. W. Lin, S. F. Xu, Convergence analysis of the doubling algorithm for several nonlinear matrix equations in the critical case, SIAM J. Matrix Anal., 227–247. https://doi.org/10.1137/080717304 |
[26] | C. H. Guo, W. W. Lin, The matrix equation $X+A^{\top}X^{-1}A = Q$ and its application in nano research, SIAM J. Sci. Comput., 32 (2010), 3020–3038. https://doi.org/10.1137/090758209 doi: 10.1137/090758209 |
[27] | G. Latouche, V. Ramaswami, A logarithmic reduction algorithm for quasi-death-birth processes, J. Appl. Probab., 30 (1993), 650–674. https://doi.org/10.2307/3214773 doi: 10.2307/3214773 |