Research article

A new local function and a new compatibility type in ideal topological spaces

  • Received: 26 October 2022 Revised: 15 December 2022 Accepted: 03 January 2023 Published: 11 January 2023
  • MSC : 54A10, 54A05, 54A99, 54C50

  • In this study, a $ \zeta^*_\Gamma $-local function is defined and its properties are examined. This newly defined local function is compared with the well-known local function and the local closure function according to the relation of being a subset. With the help of this new local function, the $ \Psi_{\zeta^*_\Gamma} $ operator is defined and topologies are obtained. Moreover, alternative answers are given to an open question found in the literature. $ \Psi_{\zeta^*_\Gamma} $-compatibility is defined and its properties are examined. $ \Psi_{\zeta^*_\Gamma} $-compatibility is characterized with the help of the new operator. Finally, new spaces were defined and characterized.

    Citation: Ferit Yalaz, Aynur Keskin Kaymakcı. A new local function and a new compatibility type in ideal topological spaces[J]. AIMS Mathematics, 2023, 8(3): 7097-7114. doi: 10.3934/math.2023358

    Related Papers:

  • In this study, a $ \zeta^*_\Gamma $-local function is defined and its properties are examined. This newly defined local function is compared with the well-known local function and the local closure function according to the relation of being a subset. With the help of this new local function, the $ \Psi_{\zeta^*_\Gamma} $ operator is defined and topologies are obtained. Moreover, alternative answers are given to an open question found in the literature. $ \Psi_{\zeta^*_\Gamma} $-compatibility is defined and its properties are examined. $ \Psi_{\zeta^*_\Gamma} $-compatibility is characterized with the help of the new operator. Finally, new spaces were defined and characterized.



    加载中


    [1] K. Kuratowski, Topologie I, Warszawa, 1933.
    [2] K. Kuratowski, Topology Volume I, Academic Press, New York-London, 1966.
    [3] R. Vaidyanathswamy, The localisation theory in set topology, P. Indian AS-Math. Sci., 20 (1945), 51–61. https://doi.org/10.1007/BF03048958 doi: 10.1007/BF03048958
    [4] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, 1960.
    [5] D. Janković, T. R. Hamlett, New topologies from old via ideals, Am. Math. Mon., 97 (1990), 295–310.
    [6] G. Freud, Ein beitrag zu dem satze von Cantor und Bendixson, Acta Math. Hung., 9 (1958), 333–336. https://doi.org/10.1007/BF02020262 doi: 10.1007/BF02020262
    [7] Z. Li, F. Lin, On I-Baire spaces, Filomat, 27 (2013), 301–310.
    [8] E. Ekici, On I-Alexandroff and $I_{g}$-Alexandroff ideal topological spaces, Filomat, 25 (2011), 99–108.
    [9] A. Keskin, Ş. Yüksel, T. Noiri, On I-extremally disconnected spaces, Commun. Fac. Sci. Univ., 56 (2007), 33–40.
    [10] J. Dontchev, M. Ganster, D. A. Rose, Ideal resolvability, Topol. Appl., 93 (1999), 1–16. https://doi.org/10.1016/S0166-8641(97)00257-5
    [11] A. Güldürdek, Ideal Rothberger spaces, Hacet. J. Math. Stat., 47 (2018), 69–75. https://doi.org/10.15672/HJMS.2017.445
    [12] O. Njastad, On some classes of nearly open sets, Pac. J. Math., 15 (1965), 961–970. https://doi.org/10.2140/pjm.1965.15.961 doi: 10.2140/pjm.1965.15.961
    [13] N. Levine, Semi-open sets and semi-continuity in topological spaces, Am. Math. Mon., 70 (1963), 36–41. https://doi.org/10.2307/2312781 https://doi.org/10.2307/2312781 doi: 10.2307/2312781
    [14] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
    [15] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, $\beta$-open sets and $\beta$-continuous mapping, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
    [16] D. Jankovic, Compatible extensions of ideals, Boll. Unione Mat. Ital., 6 (1992), 453–465.
    [17] E. Hatir, T. Noiri, On decompositions of continuity via idealization, Acta Math. Hung., 96 (2002), 341–349.
    [18] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, 1999. Available from: https://arXiv.org/abs/math/9901017v1.
    [19] A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math., 43 (2013), 139–149.
    [20] A. Pavlović, Local function versus local closure function in ideal topological spaces, Filomat, 30 (2016), 3725–3731. https://doi.org/10.2298/FIL1614725P doi: 10.2298/FIL1614725P
    [21] A. Njamcul, A. Pavlović, On closure compatibility of ideal topological spaces and idempotency of the local closure function, Period. Math. Hung., 84 (2021), 221–224. https://doi.org/10.1007/s10998-021-00401-1 doi: 10.1007/s10998-021-00401-1
    [22] M. Khan, T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2 2010, 36–42. https://doi.org/10.5373/jarpm.237.100909
    [23] M. M. Islam, S. Modak, Second approximation of local functions in ideal topological spaces, Acta Comment. Univ. Ta., 22 (2018), 245–255. https://doi.org/10.12697/ACUTM.2018.22.20 doi: 10.12697/ACUTM.2018.22.20
    [24] F. Yalaz, A. K. Kaymakcı, Weak semi-local functions in ideal topological spaces, Turk. J. Math. Comput. Sci., 11 (2019), 137–140.
    [25] F. Yalaz, A. K. Kaymakcı, New topologies from obtained operators via weak semi-local function and some comparisons, Filomat, 15 (2021), 5073–5081. https://doi.org/10.2298/FIL2115073Y doi: 10.2298/FIL2115073Y
    [26] P. Samuels, A topology formed from a given topology and ideal, J. London Math. Soc., 10 (1975), 409–416. https://doi.org/10.1112/jlms/s2-10.4.409 doi: 10.1112/jlms/s2-10.4.409
    [27] E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964), 205–215. https://doi.org/10.1007/BF01363287 doi: 10.1007/BF01363287
    [28] N. V. Veličko, H-closed topological spaces, Am. Math. Soc., 78 (1968), 103–118.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1249) PDF downloads(105) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog