Research article Special Issues

Moving average control chart under neutrosophic statistics

  • Received: 19 September 2022 Revised: 26 December 2022 Accepted: 29 December 2022 Published: 11 January 2023
  • MSC : 62A86

  • Continuous monitoring and improving the production process is a crucial step for the entrepreneur to maintain its position in the market. A successful process monitoring scheme depends upon the specification of the quality being monitored. In this paper, the monitoring of temperature is addressed using the specification of moving average under uncertainty. We determined the coefficients of the proposed chart utilizing the Monte Carlo simulation for a different measure of indeterminacy. The efficiency of the proposed chart has been evaluated by determining the average run lengths using several shift values. A real example of weather-related situation is studied for the practical adoption of the given technique. A comparison study shows that the proposed chart outperforms the existing chart in monitoring temperature-related data.

    Citation: Muhammad Aslam, Khushnoor Khan, Mohammed Albassam, Liaquat Ahmad. Moving average control chart under neutrosophic statistics[J]. AIMS Mathematics, 2023, 8(3): 7083-7096. doi: 10.3934/math.2023357

    Related Papers:

  • Continuous monitoring and improving the production process is a crucial step for the entrepreneur to maintain its position in the market. A successful process monitoring scheme depends upon the specification of the quality being monitored. In this paper, the monitoring of temperature is addressed using the specification of moving average under uncertainty. We determined the coefficients of the proposed chart utilizing the Monte Carlo simulation for a different measure of indeterminacy. The efficiency of the proposed chart has been evaluated by determining the average run lengths using several shift values. A real example of weather-related situation is studied for the practical adoption of the given technique. A comparison study shows that the proposed chart outperforms the existing chart in monitoring temperature-related data.



    加载中


    [1] T. W. Nolan, L. P. Provost, Understanding variation, Qual. Prog., 23 (1990), 70–78.
    [2] D. C. Montgomery, Introduction to statistical quality control, 6 Eds., New York: John Wiley & Sons, Inc, 2020.
    [3] M. Aslam, Neutrosophic statistical test for counts in climatology, Sci. Rep., 11 (2021), 1–5. https://doi.org/10.1038/s41598-020-79139-8 doi: 10.1038/s41598-020-79139-8
    [4] W. P. Huang, L. J. Shu, Y. Su, An accurate evaluation of adaptive exponentially weighted moving average schemes, ⅡE Trans., 46 (2014), 457–469. https://doi.org/10.1080/0740817X.2013.803642 doi: 10.1080/0740817X.2013.803642
    [5] H. Wong, F. F. Gan, T. Chang, Designs of moving average control chart, J. Stat. Comput. Simul., 74 (2004), 47–62. https://doi.org/10.1080/0094965031000105890 doi: 10.1080/0094965031000105890
    [6] Y. S. Chen, Y. M. Yang, An extension of Banerjee and Rahim's model for economic design of moving average control chart for a continuous flow process, Eur. J. Oper. Res., 143 (2002), 600–610. https://doi.org/10.1016/S0377-2217(01)00341-1 doi: 10.1016/S0377-2217(01)00341-1
    [7] M. B. Khoo, A moving average control chart for monitoring the fraction non‐conforming, Qual. Reliab. Eng. Int., 20 (2004), 617–635. https://doi.org/10.1002/qre.576 doi: 10.1002/qre.576
    [8] M. B. Khoo, V. Wong, A double moving average control chart, Commun. Stat.-Simul. C., 37 (2008), 1696–1708. https://doi.org/10.1080/03610910701832459 doi: 10.1080/03610910701832459
    [9] S. N. Lin, C. Y. Chou, S. L. Wang, H. R. Liu, Economic design of autoregressive moving average control chart using genetic algorithms, Expert Syst. Appl., 39 (2012), 1793–1798. https://doi.org/10.1016/j.eswa.2011.08.073 doi: 10.1016/j.eswa.2011.08.073
    [10] S. Maghsoodloo, D. Barnes, On moving average control charts and their conditional average run lengths, Wiley Online Library, 37 (2021), 3145–3156. https://doi.org/10.1002/qre.2992 doi: 10.1002/qre.2992
    [11] S. Rachidi, E. Leclercq, Y. Pigne, D. Lefebvre, Moving average control chart for the detection and isolation of temporal faults in stochastic Petri nets, in 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2018. https://doi.org/10.1109/ETFA.2018.8502633
    [12] V. Alevizakos, K. Chatterjee, C. Koukouvinos, The triple moving average control chart, J. Comput. Appl. Math., 384 (2021), 113171. https://doi.org/10.1016/j.cam.2020.113171 doi: 10.1016/j.cam.2020.113171
    [13] K. Talordphop, S. Sukparungsee, Y. Areepong, Performance of new nonparametric Tukey modified exponentially weighted moving average—Moving average control chart, PloS One, 17 (2022), e0275260. https://doi.org/10.1371/journal.pone.0275260 doi: 10.1371/journal.pone.0275260
    [14] K. Raweesawat, S. Sukparungsee, Explicit formulas of arl on double moving average control chart for monitoring process mean of zipinar (1) model with an excessive number of zeros, Appl. Sci. Eng. Prog., 15 (2022), 4588–4588. https://doi.org/10.14416/j.asep.2021.03.002 doi: 10.14416/j.asep.2021.03.002
    [15] S. Knoth, N. A. Saleh, M. A. Mahmoud, H. Woodall, V. G. Tercero-Gómez, A critique of a variety of "memory-based" process monitoring methods, J. Qual. Technol., 2022, 1–27. https://doi.org/10.1080/00224065.2022.2034487 doi: 10.1080/00224065.2022.2034487
    [16] N. Abbas, S. Ahmad, M. Riaz, Reintegration of auxiliary information based control charts, Comput. Ind. Eng., 171 (2022), 108479. https://doi.org/10.1016/j.cie.2022.108479 doi: 10.1016/j.cie.2022.108479
    [17] U. Afzal, H Alrweili, N Ahamd, M Aslam, Neutrosophic statistical analysis of resistance depending on the temperature variance of conducting material, Sci. Rep., 11 (2021), 1–6. https://doi.org/10.1038/s41598-020-79139-8 doi: 10.1038/s41598-020-79139-8
    [18] M. Aslam, M. Albassam, Presenting post hoc multiple comparison tests under neutrosophic statistics, J. King Saud Univ.-Sci., 32 (2020), 2728–2732. https://doi.org/10.1016/j.jksus.2020.06.008 doi: 10.1016/j.jksus.2020.06.008
    [19] F. Smarandache, Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability, Infinite Study, 2013.
    [20] F. Smarandache, Neutrosophic logic-a generalization of the intuitionistic fuzzy logic, Multispace & multistructure, Neutrosophic transdisciplinarity (100 collected papers of science), 2010,396.
    [21] F. Smarandache, Neutrosophic set is a generalization of intuitionistic fuzzy set, Inconsistent intuitionistic fuzzy set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean fuzzy set, spherical fuzzy set, and q-rung orthopair fuzzy set, while neutrosophication is a generalization of regret theory, grey system theory, and three-ways decision (revisited), J. New Theory, 29 (2019), 1–31.
    [22] M. Albassam, N. Khan, M. Aslam, Neutrosophic D'Agostino test of normality: An application to water data, J. Math., 2021 (2021). https://doi.org/10.1155/2021/5582102 doi: 10.1155/2021/5582102
    [23] C. Jana, M. Pal, A robust single-valued neutrosophic soft aggregation operators in multi-criteria decision making, Symmetry, 11 (2019), 110. https://doi.org/10.3390/sym11010110 doi: 10.3390/sym11010110
    [24] A. A. A. Jarrín, D. S. P. Tamayo, S. A. M. Giler, J. C. A. Zambrano, D. M. Macazan, Neutrosophic statistics applied in social science, Neutrosophic Sets Sy., 44 (2021).
    [25] M. Aslam, N. Khan, A new variable control chart using neutrosophic interval method-an application to automobile industry, J. Intell. Fuzzy Syst., 36 (2019), 2615–2623. https://doi.org/10.3233/JIFS-181767 doi: 10.3233/JIFS-181767
    [26] M. Aslam, N. Khan, M. Z. Khan, Monitoring the variability in the process using neutrosophic statistical interval method, Symmetry, 10 (2018), 562. https://doi.org/10.3390/sym10110562 doi: 10.3390/sym10110562
    [27] T. Bera, N. K. Mahapatra, Introduction to neutrosophic soft groups, Neutrosophic Sets Sy., 13 (2016), 118–127.
    [28] J. Chen, J. Ye, S. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry, 9 (2017), 208. https://doi.org/10.3390/sym9100208 doi: 10.3390/sym9100208
    [29] R. Alhabib, M. M. Ranna, H. Farah, Some neutrosophic probability distributions, Neutrosophic Sets Sy., 22 (2018), 30–38.
    [30] M. Aslam, A. Al Shareef, K. Khan, RETRACTED ARTICLE: Monitoring the temperature through moving average control under uncertainty environment, Sci. Rep., 10 (2020), 1–8. https://doi.org/10.1038/s41598-019-56847-4 doi: 10.1038/s41598-019-56847-4
    [31] W. H. Woodall, A. R. Driscoll, D. C. Montgomery, A review and perspective on neutrosophic statistical process monitoring methods, IEEE Access, 10 (2022), 100456–100462. https://doi.org/10.1109/ACCESS.2022.3207188 doi: 10.1109/ACCESS.2022.3207188
    [32] Z. Li, Z. Wang, Z. Wu, Necessary and sufficient conditions for non-interaction of a pair of one-sided EWMA schemes with reflecting boundaries, Stat. Probabil. Lett., 79 (2009), 368–374. https://doi.org/10.1016/j.spl.2008.09.004 doi: 10.1016/j.spl.2008.09.004
    [33] Z. Li, C. Zou, Z. Gong, Z. Wang, The computation of average run length and average time to signal: An overview, J. Stat. Comput. Sim., 84 (2014), 1779–1802. https://doi.org/10.1080/00949655.2013.766737 doi: 10.1080/00949655.2013.766737
    [34] D. B. Lobell, C. Bonfils, P. B. Duffy, Climate change uncertainty for daily minimum and maximum temperatures: A model inter‐comparison, Geophys. Res. Lett., 34 (2007). https://doi.org/10.1029/2006GL028726 doi: 10.1029/2006GL028726
    [35] M. Rischard, N. Pillai, K. A. McKinnon, Bias correction in daily maximum and minimum temperature measurements through Gaussian process modeling, arXiv: 1805.10214, 2018. https://doi.org/10.48550/arXiv.1805.10214
    [36] R. G. Harrison, S. D. Burt, Quantifying uncertainties in climate data: Measurement limitations of naturally ventilated thermometer screens, Environ. Res. Commun., 3 (2021), 061005. https://doi.org/10.1088/2515-7620/ac0d0b doi: 10.1088/2515-7620/ac0d0b
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1461) PDF downloads(106) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog