We give a modified block-by-block method for the nonlinear fractional order Volterra integral equation system by using quadratic Lagrangian interpolation based on the classical block-by-block method. The core of the method is that we divide its domain into a series of subdomains, that is, block it, and use piecewise quadratic Lagrangian interpolation on each subdomain to approximate $ \mathit{\boldsymbol{\kappa}}(x, y, s, r, u(s, r)) $. Our proposed method has uniform accuracy and its convergence order is $ O(h_x^{4-\alpha}+h_y^{4-\beta}) $. We give a strict proof for the error analysis of the method, and give several numerical examples to verify the correctness of the theoretical analysis.
Citation: Ziqiang Wang, Qin Liu, Junying Cao. A higher-order numerical scheme for system of two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy[J]. AIMS Mathematics, 2023, 8(6): 13096-13122. doi: 10.3934/math.2023661
We give a modified block-by-block method for the nonlinear fractional order Volterra integral equation system by using quadratic Lagrangian interpolation based on the classical block-by-block method. The core of the method is that we divide its domain into a series of subdomains, that is, block it, and use piecewise quadratic Lagrangian interpolation on each subdomain to approximate $ \mathit{\boldsymbol{\kappa}}(x, y, s, r, u(s, r)) $. Our proposed method has uniform accuracy and its convergence order is $ O(h_x^{4-\alpha}+h_y^{4-\beta}) $. We give a strict proof for the error analysis of the method, and give several numerical examples to verify the correctness of the theoretical analysis.
[1] | K. A. Ahmad, R. Ezzati, K. M. Afshar, Solving systems of fractional two-dimensional nonlinear partial Volterra integral equations by using Haar wavelets, J. Appl. Anal., 27 (2021), 239–257. https://doi.org/10.1515/JAA-2021-2050 doi: 10.1515/JAA-2021-2050 |
[2] | A. Karimi, K. Maleknejad, R. Ezzati, Numerical solutions of system of two-dimensional Volterra integral equations via Legendre wavelets and convergence, Appl. Numer. Math., 156 (2020), 228–241. https://doi.org/10.1016/j.apnum.2020.05.003 doi: 10.1016/j.apnum.2020.05.003 |
[3] | H. Liu, J. Huang, W. Zhang, Y. Ma, Meshfree approach for solving multi-dimensional systems of Fredholm integral equations via barycentric Lagrange interpolation, Appl. Math. Comput., 346 (2019), 295–304. https://doi.org/10.1016/j.amc.2018.10.024 doi: 10.1016/j.amc.2018.10.024 |
[4] | J. Xie, M. Yi, Numerical research of nonlinear system of fractional Volterra-Fredholm integral-differential equations via Block-Pulse functions and error analysis, J. Comput. Appl. Math., 345 (2019), 159–167. https://doi.org/10.1016/j.cam.2018.06.008 doi: 10.1016/j.cam.2018.06.008 |
[5] | P. Gonz$\acute{a}$lez-Rodelas, M. Pasadas, A. Kouibia, B. Mustafa, Numerical solution of linear Volterra integral equation systems of second kind by radial basis functions, Mathematics, 10 (2022), 223. https://doi.org/10.3390/MATH10020223 doi: 10.3390/MATH10020223 |
[6] | A. R. Yaghoobnia, R. Ezzati, Using Bernstein multi-scaling polynomials to obtain numerical solution of Volterra integral equations system, Comput. Appl. Math., 39 (2020), 608–616. https://doi.org/10.1007/s40314-020-01198-4 doi: 10.1007/s40314-020-01198-4 |
[7] | A. Jafarian, S. Measoomy, S. Abbasbandy, Artificial neural networks based modeling for solving Volterra integral equations system, Appl. Soft Comput., 27 (2015), 391–398. https://doi.org/ 10.1016/j.asoc.2014.10.036 doi: 10.1016/j.asoc.2014.10.036 |
[8] | J. Cao, C. Xu, A high order schema for the numercial solution of the fractional ordinary differential equations, J. Comput. Phys., 238 (2013), 154–168. https://doi.org/10.1016/j.jcp.2012.12.013 doi: 10.1016/j.jcp.2012.12.013 |
[9] | R. Katani, S. Shahmorad, Block by block method for the systems of nonlinear Volterra integral equtions, Appl. Math. Model., 34 (2010), 400–406. https://doi.org/10.1016/j.apm.2009.04.013 doi: 10.1016/j.apm.2009.04.013 |
[10] | H. H. Sorkun, S. Yalçinbaş, Approximate solutions of linear Volterra integral equation systems with variable coefficients, Appl. Math. Model., 34 (2010), 3451–3464. https://doi.org/10.1016/j.apm.2010.02.034 doi: 10.1016/j.apm.2010.02.034 |
[11] | M. I. Berenguer, D. Gámez, A. I. G. Guillem, M. R. Galán, M. C. S. Pérez, Biorthogonal systems for solving Volterra integral equation systems of the second kind, J. Comput. Appl. Math., 235 (2010), 1875–1883. https://doi.org/10.1016/j.cam.2010.07.011 doi: 10.1016/j.cam.2010.07.011 |
[12] | K. Maleknejad, A. S. Shamloo, Numerical solution of singular Volterra integral equations system of convolution type by using operational matrices, Appl. Math. Comput., 195 (2007), 500–505. https://doi.org/10.1016/j.amc.2007.05.001 doi: 10.1016/j.amc.2007.05.001 |
[13] | A. Tahmasbi, O. S. Fard, Numerical solution of linear Volterra integral equations system of the second kind, Appl. Math. Comput., 201 (2008), 547–552. https://doi.org/10.1016/j.amc.2007.12.041 doi: 10.1016/j.amc.2007.12.041 |
[14] | M. Rabbani, K. Maleknejad, N. Aghazadeh, Numerical computational solution of the Volterra integral equations system of the second kind by using an expansion method, Appl. Math. Comput., 187 (2006), 1143–1146. https://doi.org/10.1016/j.amc.2006.09.012 doi: 10.1016/j.amc.2006.09.012 |
[15] | S. Yalçinbaş, K. Erdem, Approximate solutions of nonlinear Volterra equation systems, Internat. J. Modern Phys. B., 24 (2010), 6235–6258. https://doi.org/10.1142/S0217979210055524 doi: 10.1142/S0217979210055524 |
[16] | M. A. Zaky, I. G. Ameen, N. A. Elkot, E. H. Doha, A unified spectral collocation method for nonlinear systems of multi-dimensional integral equations with convergence analysis, Appl. Numer. Math., 161 (2021), 27–45. https://doi.org/10.1016/j.apnum.2020.10.028 doi: 10.1016/j.apnum.2020.10.028 |
[17] | E. Babolian, M. Mordad, A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions, Comput. Math. Appl., 62 (2011), 187–198. https://doi.org/10.1016/j.camwa.2011.04.066 doi: 10.1016/j.camwa.2011.04.066 |
[18] | F. Mirzaee, E. Hadadiyan, Solving system of linear Stratonovich Volterra integral equations via modification of hat functions, Appl. Math. Comput., 293 (2017), 254–264. https://doi.org/10.1016/j.amc.2016.08.016 doi: 10.1016/j.amc.2016.08.016 |
[19] | E. Babolian, J. Biazar, A. R. Vahidi, On the decomposition method for system of linear equations and system of linear Volterra integral equations, Appl. Math. Comput., 147 (2004), 19–27. https://doi.org/10.1016/S0096-3003(02)00644-6 doi: 10.1016/S0096-3003(02)00644-6 |
[20] | K. Maleknejad, M. Shahrezaee, Using Runge-Kutta method for numerical solution of the system of Volterra integral equation, Appl. Math. Comput., 149 (2004), 399–410. https://doi.org/10.1016/s0096-3003(03)00148-6 doi: 10.1016/s0096-3003(03)00148-6 |
[21] | W. Jiang, Z. Chen, Solving a system of linear Volterra integral equations using the new reproducing kernel method, Appl. Math. Comput., 219 (2013), 10225–10230. https://doi.org/10.1016/j.amc.2013.03.123 doi: 10.1016/j.amc.2013.03.123 |
[22] | J. Biazar, H. Ebrahimi, Chebyshev wavelets approach for nonlinear systems of Volterra integral equations, Comput. Math. Appl., 63 (2012), 608–616. https://doi.org/10.1016/j.camwa.2011.09.059 doi: 10.1016/j.camwa.2011.09.059 |
[23] | F. Mirzaee, S. Hoseini, A new collocation approach for solving systems of high-order linear Volterra integro-differential equations with variable coefficients, Appl. Math. Comput., 311 (2017), 272–282. https://doi.org/10.1016/j.amc.2017.05.031 doi: 10.1016/j.amc.2017.05.031 |
[24] | D. Conte, S. Shahmorad, Y. Talaei, New fractional Lanczos vector polynomials and their application to system of Abel-Volterra integral equations and fractional differential equations, J. Comput. Appl. Math., 366 (2020), 112409. https://doi.org/10.1016/j.cam.2019.112409 doi: 10.1016/j.cam.2019.112409 |
[25] | K. Sadri, K. Hosseini, D. Baleanu, S. Salahshour, A high-accuracy Vieta-Fibonacci collocation scheme to solve linear time-fractional telegraph equations, Wave. Rand. Complex Media, 2022, 2135789. https://doi.org/10.1080/17455030.2022.2135789 |
[26] | S. Khadijeh, H. Kamyar, B. Dumitru, S. Soheil, P. Choonkil, Designing a matrix collocation method for fractional delay intgro-differential equations with weakly singular kernels based on Vieta-Fibonacci polynomials, Fractal Fract., 6 (2022). https://doi.org/10.3390/fractalfract6010002 |
[27] | J. Dixon, S. Mxkee, Weakly singular discrete Gronwall inequalities, Z. Angew. Math. Mech., 66 (1978), 535–544. https://doi.org/10.1002/zamm.19860661107 doi: 10.1002/zamm.19860661107 |