Research article

Stability analysis for $ (\omega, c) $-periodic non-instantaneous impulsive differential equations

  • Received: 03 September 2021 Accepted: 22 October 2021 Published: 02 November 2021
  • MSC : 34A08, 34A37, 34C25

  • In this paper, the stability of $ (\omega, c) $-periodic solutions of non-instantaneous impulses differential equations is studied. The exponential stability of homogeneous linear non-instantaneous impulsive problems is studied by using Cauchy matrix, and some sufficient conditions for exponential stability are obtained. Further, by using Gronwall inequality, sufficient conditions for exponential stability of $ (\omega, c) $-periodic solutions of nonlinear noninstantaneous impulsive problems are established. Finally, some examples are given to illustrate the correctness of the conclusion.

    Citation: Kui Liu. Stability analysis for $ (\omega, c) $-periodic non-instantaneous impulsive differential equations[J]. AIMS Mathematics, 2022, 7(2): 1758-1774. doi: 10.3934/math.2022101

    Related Papers:

  • In this paper, the stability of $ (\omega, c) $-periodic solutions of non-instantaneous impulses differential equations is studied. The exponential stability of homogeneous linear non-instantaneous impulsive problems is studied by using Cauchy matrix, and some sufficient conditions for exponential stability are obtained. Further, by using Gronwall inequality, sufficient conditions for exponential stability of $ (\omega, c) $-periodic solutions of nonlinear noninstantaneous impulsive problems are established. Finally, some examples are given to illustrate the correctness of the conclusion.



    加载中


    [1] E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, P. Am. Math. Soc., 141 (2013), 1641–1649. doi: 10.1090/S0002-9939-2012-11613-2. doi: 10.1090/S0002-9939-2012-11613-2
    [2] M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantanous impulses, Appl. Math. Comput., 219 (2013), 6743–6749. doi: 10.1016/j.amc.2012.12.084. doi: 10.1016/j.amc.2012.12.084
    [3] M. Fečkan, J. Wang, Y. Zhou, Existence of periodic solutions for nonlinear evolution equations with non-instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93–101. doi: 10.2478/msds-2014-0004. doi: 10.2478/msds-2014-0004
    [4] M. Muslim, A. Kumar, M. Fečkan, Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Univ., 30 (2018), 204–213. doi: 10.1016/j.jksus.2016.11.005. doi: 10.1016/j.jksus.2016.11.005
    [5] J. Wang, M. Li, D. O'Regan, M. Fečkan, Robustness for linear evolution equations with non-instantaneous impulsive effects, Bull. Sci. Math., 159 (2020), 102827. doi: 10.1016/j.bulsci.2019.102827. doi: 10.1016/j.bulsci.2019.102827
    [6] D. Yang, J. Wang, D. O'Regan, On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses, CR. Math., 356 (2018), 150–171. doi: 10.1016/j.crma.2018.01.001. doi: 10.1016/j.crma.2018.01.001
    [7] M. Li, J. Wang, D. O'Regan, M. Fečkan, Center manifolds for non-instantaneous impulses equations under nonuniform hyperbolicity, CR. Math., 358 (2020), 341–364. doi: 10.5802/crmath.47. doi: 10.5802/crmath.47
    [8] J. Wang, W. Zhang, M. Fečkan, Periodic boundary value problem for second-order differential equations from geophysical fluid flows, Monatsh. Math., 195 (2021), 523–540. doi: 10.1007/s00605-021-01539-3. doi: 10.1007/s00605-021-01539-3
    [9] P. Yang, J. Wang, M. Fečkan, Periodic nonautonomous differential equations with noninstantaneous impulsive effects, Math. Method. Appl. Sci., 42 (2019), 3700–3720. doi: 10.1002/mma.5606. doi: 10.1002/mma.5606
    [10] M. Muslim, A. Kumar, M. Fečkan, Periodic solutions to second order nonlinear differential equations with non-instantaneous impulses, Dyn. Syst. Appl., 26 (2017), 197–210.
    [11] Y. Tian, J. Wang, Y. Zhou, Almost periodic solutions of non-instantaneous impulsive differential equations, Quaest. Math., 42 (2019), 885–905. doi: 10.2989/16073606.2018.1499562. doi: 10.2989/16073606.2018.1499562
    [12] E. Alvarez, A. Gómez, M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro-differential equations, Electron. J. Qual. Theo., 16 (2018), 1–8. doi: 10.14232/ejqtde.2018.1.16. doi: 10.14232/ejqtde.2018.1.16
    [13] M. Li, J. Wang, M. Fečkan, $(\omega, c)$-periodic solutions for impulsive differential systems, Commun. Math., 21 (2018), 35–45. doi: 10.1088/978-0-7503-1704-7ch4. doi: 10.1088/978-0-7503-1704-7ch4
    [14] J. Wang, L. Ren, Y. Zhou, $(\omega, c)$-periodic solutions for time varying impulsive differential equations, Adv. Differ. Equ., 2019 (2019). doi: 10.1186/s13662-019-2188-z. doi: 10.1186/s13662-019-2188-z
    [15] K. Liu, J. Wang, D. O'Regan, M. Fečkan, A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 1–22. doi: 10.1007/s00009-020-01574-8. doi: 10.1007/s00009-020-01574-8
    [16] M. Fečkan, K. Liu, J. Wang, $(\omega, c)$-periodic solutions of non-instantaneous impulsive evolution equations, Dynam. Syst. Appl., 29 (2020), 3359–3380. doi: 10.46719/dsa202029125. doi: 10.46719/dsa202029125
    [17] K. Liu, M. Fečkan, D. O'Regan, J. Wang, $(\omega, c)$-periodic solutions for time-varying non-instantaneous impulsive differential systems, Appl. Anal., 2021. doi 10.1080/00036811.2021.1895123.
    [18] M. Fečkan, K. Liu, J. Wang, $(\omega, T)$-periodic solutions of impulsive evolution equations, Evol. Equ. Control The., 2021. doi: 10.3934/eect.2021006.
    [19] J. Wang, A. G. Ibrahim, D. O'Regan, Y. Zhou, Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness, Indagat. Math., 29 (2018), 1362–1392. doi: 10.1016/j.indag.2018.07.002. doi: 10.1016/j.indag.2018.07.002
    [20] K. Kaliraj, E. Thilakraj, C. Ravichandran, K. S. Nisar, Controllability analysis for impulsive integro-differential equation via Atangana Baleanu fractional derivative, Math. Method. Appl. Sci., 2021, 1–10. doi: 10.1002/mma.7693.
    [21] J. Wang, A. G. Ibrahim, D. O'Regan, Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions, J. Fix. Point Theory. A., 20 (2018), 59. doi: 10.1007/s11784-018-0534-5. doi: 10.1007/s11784-018-0534-5
    [22] C. Ravichandran, K. Logeswari, S. K. Panda, K. S. Nisar, On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions, Chaos Soliton. Fract., 139 (2020), 110012. doi: 10.1016/j.chaos.2020.110012. doi: 10.1016/j.chaos.2020.110012
    [23] A. Kumar, H. V. S. Chauhan, C. Ravichandran, K. S. Nisar, D. Baleanu, Existence of solutions of non-autonomous fractional differential equations with integral impulse condition, Adv. Differ. Equ., 2020 (2020), 434. doi: 10.1186/s13662-020-02888-3. doi: 10.1186/s13662-020-02888-3
    [24] J. A. Machado, C. Ravichandran, M. Rivero, J. J. Trujillo, Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions, Fixed Point Theory A., 2013 (2013), 66. doi: 10.1186/1687-1812-2013-66. doi: 10.1186/1687-1812-2013-66
    [25] Y. Guan, J. Wang, M. Feckan, Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows, Discrete Cont. Dyn-A., 41 (2021), 1157–1176. doi: 10.3934/dcds.2020313. doi: 10.3934/dcds.2020313
    [26] K. Liu, J. Wang, Y. Zhou, D. O'Regan. Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 132 (2020), 109534. doi: 10.1016/j.chaos.2019.109534. doi: 10.1016/j.chaos.2019.109534
    [27] J. Wang, Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., 73 (2017), 157–162. doi: 10.1016/j.aml.2017.04.010. doi: 10.1016/j.aml.2017.04.010
    [28] P. Yang, J. Wang, M. Fečkan, Boundedness, periodicity, and conditional stability of noninstantaneous impulsive evolution equations, Math. Meth. Appl. Sci., 43 (2020), 5905–5926. doi: 10.1002/mma.6332. doi: 10.1002/mma.6332
    [29] J. Wang, M. Li, D. O'Regan, Lyapunov regularity and stability of linear Non-instantaneous impulsive differential systems, IMA J. Appl. Math., 84 (2019), 712–747. doi: 10.1093/imamat/hxz012. doi: 10.1093/imamat/hxz012
    [30] J. Wang, M. Fečkan, Y. Tian, Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterr. J. Math., 14 (2017), 1–21. doi: 10.1007/s00009-017-0867-0. doi: 10.1007/s00009-017-0867-0
    [31] J. Ortega, W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, London: Academic Press, 1970. doi: 10.1023/B:JAMT.0000046037.83191.29.
    [32] A. Samoilenko, N. Perestyuk, Y. Chapovsky, Impulsive Differential Equations, Singapore: World Scientific, 1995. doi: 10.1142/2892.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1694) PDF downloads(93) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog