In this paper, we consider the existence, multiplicity and nonexistence of solutions for a class of $ p $-Laplacian differential equations with non-instantaneous impulses. By using variational methods and critical point theory, we obtain that the impulsive problem has at least one nontrivial solution, at least two nontrivial solutions and no nontrivial solution.
Citation: Wangjin Yao. Variational approach to non-instantaneous impulsive differential equations with $ p $-Laplacian operator[J]. AIMS Mathematics, 2022, 7(9): 17269-17285. doi: 10.3934/math.2022951
In this paper, we consider the existence, multiplicity and nonexistence of solutions for a class of $ p $-Laplacian differential equations with non-instantaneous impulses. By using variational methods and critical point theory, we obtain that the impulsive problem has at least one nontrivial solution, at least two nontrivial solutions and no nontrivial solution.
[1] | L. Bai, J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 73 (2017), 44–48. https://doi.org/10.1016/j.aml.2017.02.019 doi: 10.1016/j.aml.2017.02.019 |
[2] | L. Bai, J. J. Nieto, X. Y. Wang, Variational approach to non-instantaneous impulsive nonlinear differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2440–2448. https://doi.org/10.22436/jnsa.010.05.14 doi: 10.22436/jnsa.010.05.14 |
[3] | L. E. Bobisud, Steady-state turbulent flow with reaction, Rocky Mountain J. Math., 21 (1991), 993–1007. https://doi.org/10.1216/rmjm/1181072925 doi: 10.1216/rmjm/1181072925 |
[4] | G. Bonanno, P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math., 80 (2003), 424–429. https://doi.org/10.1007/s00013-003-0479-8 doi: 10.1007/s00013-003-0479-8 |
[5] | P. Chen, X. H. Tang, Existence and multiplicity of solutions for second-order impulsive differential equations with Dirichlet problems, Appl. Math. Comput., 218 (2012), 11775–11789. https://doi.org/10.1016/j.amc.2012.05.027 doi: 10.1016/j.amc.2012.05.027 |
[6] | T. Y. Chen, W. B. Liu, An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator, Appl. Math. Lett., 25 (2012), 1671–1675. https://doi.org/10.1016/j.aml.2012.01.035 doi: 10.1016/j.aml.2012.01.035 |
[7] | V. Colao, L. Muglia, H. K. Xu, Existence of solutions for a second-order differential equation with non-instantaneous impulses and delay, Annali di Matematica, 195 (2016), 697–716. https://doi.org/10.1007/s10231-015-0484-0 doi: 10.1007/s10231-015-0484-0 |
[8] | M. Del Pino, M. Elgueta, R. Manásevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t, u) = 0$, $u(0) = u(T) = 0$, $p>1$, J. Differ. Equ., 80 (1989), 1–13. https://doi.org/10.1016/0022-0396(89)90093-4 doi: 10.1016/0022-0396(89)90093-4 |
[9] | Y. Z. Ding, Z. L. Wei, J. F. Xu, D. O'Regan, Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian, J. Comput. Appl. Math., 288 (2015), 151–158. https://doi.org/10.1016/j.cam.2015.04.002 doi: 10.1016/j.cam.2015.04.002 |
[10] | J. R. Esteban, J. L. Vázquez, On the equation of turbulent filtration in one-dimensional porous media, Nonlinear Anal. Theor., 10 (1986), 1303–1325. https://doi.org/10.1016/0362-546X(86)90068-4 doi: 10.1016/0362-546X(86)90068-4 |
[11] | M. Ferrara, S. Heidarkhani, P. F. Pizzimenti, Multiple solutions for Dirichlet impulsive equations, Adv. Nonlinear Anal., 3 (2014), s89–s98. https://doi.org/10.1515/anona-2014-0023 doi: 10.1515/anona-2014-0023 |
[12] | D. D. Gao, J. L. Li, New results for impulsive fractional differential equations through variational methods, Math. Nachr., 294 (2021), 1866–1878. https://doi.org/10.1002/mana.201800383 doi: 10.1002/mana.201800383 |
[13] | J. R. Graef, S. Heidarkhani, L. J. Kong, S. Moradi, Three solutions for impulsive fractional boundary value problems with p-Laplacian, Bull. Iran. Math. Soc., 2021, in press. https://doi.org/10.1007/s41980-021-00589-5 |
[14] | S. Heidarkhani, S. Moradi, G. Caristi, Variational approaches for a p-Laplacian boundary-value problem with impulsive effects, Bull. Iran. Math. Soc., 44 (2018), 377–404. https://doi.org/10.1007/s41980-018-0025-x doi: 10.1007/s41980-018-0025-x |
[15] | S. Heidarkhani, A. Salari, Nontrivial solutions for impulsive fractional differential systems through variational methods, Math. Method. Appl. Sci., 43 (2020), 6529–6541. https://doi.org/10.1002/mma.6396 doi: 10.1002/mma.6396 |
[16] | E. Hern$\acute{\text{a}}$ndez, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/S0002-9939-2012-11613-2 doi: 10.1090/S0002-9939-2012-11613-2 |
[17] | L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirgiz. SSSR, 9 (1983), 7–10. |
[18] | J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, New York: Springer, 1989. https://doi.org/10.1007/978-1-4757-2061-7 |
[19] | D. D. Min, F. Q. Chen, Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem, Fract. Calc. Appl. Anal., 24 (2021), 1069–1093. https://doi.org/10.1515/fca-2021-0046 doi: 10.1515/fca-2021-0046 |
[20] | R. Nesmoui, D. Abdelkader, J. J. Nieto, A. Ouahab, Variational approach to non-instantaneous impulsive system of differential equations, Nonlinear Stud., 28 (2021), 563–573. |
[21] | J. J. Nieto, D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal. Real, 10 (2009), 680–690. https://doi.org/10.1016/j.nonrwa.2007.10.022 doi: 10.1016/j.nonrwa.2007.10.022 |
[22] | J. J. Nieto, Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., 23 (2010), 940–942. https://doi.org/10.1016/j.aml.2010.04.015 doi: 10.1016/j.aml.2010.04.015 |
[23] | N. Nyamoradi, R. Rodríguez-López, On boundary value problems for impulsive fractional differential equations, Appl. Math. Comput., 271 (2015), 874–892. https://doi.org/10.1016/j.amc.2015.09.008 doi: 10.1016/j.amc.2015.09.008 |
[24] | M. Pierri, H. R. Henriquez, A. Prokopczyk, Global solutions for abstract differential equations with non-instantaneous impulses, Mediterr. J. Math., 13 (2016), 1685–1708. https://doi.org/10.1007/s00009-015-0609-0 doi: 10.1007/s00009-015-0609-0 |
[25] | H. X. Shi, H. B. Chen, Multiple solutions for p-Laplacian boundary-value problems with impulsive effects, Electronic Journal of Differential Equations, 2015 (2015), 1–9. |
[26] | H. X. Shi, H. B. Chen, Q. Zhang, Infinitely many solutions for a p-Laplacian boundary value problem with impulsive effects, J. Appl. Math. Comput., 46 (2014), 93–106. https://doi.org/10.1007/s12190-013-0739-0 doi: 10.1007/s12190-013-0739-0 |
[27] | J. Simon, Régularité de la solution d'une équation non linéaire dans $\mathbb{R}^{N}$, In: Journées d'Analyse Non Linéaire, Berlin, Heidelberg: Springer, 1978,205–227. https://doi.org/10.1007/BFb0061807 |
[28] | J. T. Sun, H. B. Chen, L. Yang, Variational methods to fourth-order impulsive differential equations, J. Appl. Math. Comput., 35 (2011), 323–340. https://doi.org/10.1007/s12190-009-0359-x doi: 10.1007/s12190-009-0359-x |
[29] | Y. Tian, W. G. Ge, Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 51 (2008), 509–527. https://doi.org/10.1017/S0013091506001532 doi: 10.1017/S0013091506001532 |
[30] | Y. Wang, Y. S. Liu, Y. J. Cui, Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian, Bound. Value Probl., 2018 (2018), 94. https://doi.org/10.1186/s13661-018-1012-0 doi: 10.1186/s13661-018-1012-0 |
[31] | L. Wei, R. P. Agarwal, Existence of solutions to nonlinear Neumann boundary value problems with generalized p-Laplacian operator, Comput. Math. Appl., 56 (2008), 530–541. https://doi.org/10.1016/j.camwa.2008.01.013 doi: 10.1016/j.camwa.2008.01.013 |
[32] | Y. F. Wei, Z. B. Bai, Multiple solutions for some nonlinear impulsive differential equations with three-point boundary conditions via variational approach, J. Appl. Anal. Comput., 11 (2021), 3031–3043. https://doi.org/10.11948/20210113 doi: 10.11948/20210113 |
[33] | Y. Yue, Y. Tian, M. Zhang, J. G. Liu, Existence of infinitely many solutions for fourth-order impulsive differential equations, Appl. Math. Lett., 81 (2018), 72–78. https://doi.org/10.1016/j.aml.2018.02.006 doi: 10.1016/j.aml.2018.02.006 |
[34] | E. Zeidler, Nonlinear functional analysis and its applications, III, Variational methods and optimization, New York: Springer, 1985. https://doi.org/10.1007/978-1-4612-5020-3 |
[35] | D. Zhang, Multiple solutions of nonlinear impulsive differential equations with Dirichlet boundary conditions via variational method, Results Math., 63 (2013), 611–628. https://doi.org/10.1007/s00025-011-0221-y doi: 10.1007/s00025-011-0221-y |
[36] | Y. L. Zhao, C. L. Luo, H. B. Chen, Existence results for non-instantaneous impulsive nonlinear fractional differential equation via variational methods, Bull. Malays. Math. Sci. Soc., 43 (2020), 2151–2169. https://doi.org/10.1007/s40840-019-00797-7 doi: 10.1007/s40840-019-00797-7 |