Research article

On classification of finite commutative chain rings

  • Received: 19 February 2021 Accepted: 18 September 2021 Published: 02 November 2021
  • MSC : 12J12, 13B05, 13E10

  • Let $ R $ be a finite commutative chain ring with invariants $ p, n, r, k, m. $ It is known that $ R $ is an extension over a Galois ring $ GR(p^n, r) $ by an Eisenstein polynomial of some degree $ k $. If $ p\nmid k, $ the enumeration of such rings is known. However, when $ p\mid k $, relatively little is known about the classification of these rings. The main purpose of this article is to investigate the classification of all finite commutative chain rings with given invariants $ p, n, r, k, m $ up to isomorphism when $ p\mid k. $ Based on the notion of j-diagram initiated by Ayoub, the number of isomorphism classes of finite (complete) chain rings with $ (p-1)\nmid k $ is determined. In addition, we study the case $ (p-1)\mid k, $ and show that the classification is strongly dependent on Eisenstein polynomials not only on $ p, n, r, k, m. $ In this case, we classify finite (incomplete) chain rings under some conditions concerning the Eisenstein polynomials. These results yield immediate corollaries for p-adic fields, coding theory and geometry.

    Citation: Sami Alabiad, Yousef Alkhamees. On classification of finite commutative chain rings[J]. AIMS Mathematics, 2022, 7(2): 1742-1757. doi: 10.3934/math.2022100

    Related Papers:

  • Let $ R $ be a finite commutative chain ring with invariants $ p, n, r, k, m. $ It is known that $ R $ is an extension over a Galois ring $ GR(p^n, r) $ by an Eisenstein polynomial of some degree $ k $. If $ p\nmid k, $ the enumeration of such rings is known. However, when $ p\mid k $, relatively little is known about the classification of these rings. The main purpose of this article is to investigate the classification of all finite commutative chain rings with given invariants $ p, n, r, k, m $ up to isomorphism when $ p\mid k. $ Based on the notion of j-diagram initiated by Ayoub, the number of isomorphism classes of finite (complete) chain rings with $ (p-1)\nmid k $ is determined. In addition, we study the case $ (p-1)\mid k, $ and show that the classification is strongly dependent on Eisenstein polynomials not only on $ p, n, r, k, m. $ In this case, we classify finite (incomplete) chain rings under some conditions concerning the Eisenstein polynomials. These results yield immediate corollaries for p-adic fields, coding theory and geometry.



    加载中


    [1] S. Alabiad, Y. Alkhamees, Recapturing the structure of group of units of any finite commutative chain ring, Symmetry, 13 (2021), 307. doi: 10.3390/sym13020307. doi: 10.3390/sym13020307
    [2] J. W. S. Cassels, Local fields, Cambridge University Press, 1986. doi: 10.1017/CBO9781139171885.
    [3] C. W. Ayoub, On the group of units of certain rings, J. Number Theory, 4 (1972), 383–403. doi: 10.1016/0022-314X(72)90070-4
    [4] W. E. Clark, J. J. Liang, Enumeration of finite chain rings, J. Algebra, 27 (1973), 445–453. doi: 10.1016/0021-8693(73)90055-0. doi: 10.1016/0021-8693(73)90055-0
    [5] M. Greferath, Cyclic codes over finite rings, Discrete Math., 177 (1997), 273–277. doi: 10.1016/S0012-365X(97)00006-X. doi: 10.1016/S0012-365X(97)00006-X
    [6] P. W. Haggard, J. O. Kiltenin, Binomial expansion modulo prime powers, Int. J. Math. Math. Sci., 3 (1980), 985261. doi: 10.1155/S0161171280000270. doi: 10.1155/S0161171280000270
    [7] X. D. Hou, Finite commutative chain rings, Finite Fields Appl., 7 (2001), 382–396. doi: 10.1006/ffta.2000.0317. doi: 10.1006/ffta.2000.0317
    [8] J. Neukirch, Local class field theory, Berlin: Springer, 1986.
    [9] W. Klingenberg, Projective und affine Ebenen mit Nachbarelementen, Math. Z., 60 (1954), 384–406. doi: 10.1007/BF01187385. doi: 10.1007/BF01187385
    [10] S. Lang, Algebraic number theory, New York: Springer, 1994. doi: 10.1007/978-1-4612-0853-2.
    [11] X. S. Lui, H. L. Lui, LCD codes over finite chain rings, Finite Fields Appl., 34 (2015), 1–19. doi: 10.1016/j.ffa.2015.01.004. doi: 10.1016/j.ffa.2015.01.004
    [12] B. R. McDonald, Finite rings with identity, New York: Marcel Dekker, 1974.
    [13] R. Raghavendran, Finite associative rings, Compos. Math., 21 (1969), 195–229.
    [14] M. J. Shi, S. X. Zhu, S. L. Yang, A class of optimal p-ary codes from one-weight codes over $F_{p}[u]/ < u^m>$, J. Franklin I., 350 (2013), 929–937. doi: 10.1016/j.jfranklin.2012.05.014. doi: 10.1016/j.jfranklin.2012.05.014
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1953) PDF downloads(151) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog