The complex representation rings of finite groups are the fundamental class of fusion rings, categorified by the corresponding fusion categories of complex representations. The category of $ \mathbb{Z}_+ $-modules of finite rank over such a representation ring is also semisimple. In this paper, we classify the irreducible based modules of rank up to 5 over the complex representation ring $ r(S_4) $ of the symmetric group $ S_4 $. In total, 16 inequivalent irreducible based modules were obtained. In this process, the MATLAB program was used in order to obtain some representation matrices. Based on such a classification result, we further discuss the categorification of based modules over $ r(S_4) $ by module categories over the complex representation category $ {\rm Rep}(S_4) $ of $ S_4 $ arisen from projective representations of certain subgroups of $ S_4 $.
Citation: Wenxia Wu, Yunnan Li. Classification of irreducible based modules over the complex representation ring of $ S_4 $[J]. AIMS Mathematics, 2024, 9(7): 19859-19887. doi: 10.3934/math.2024970
The complex representation rings of finite groups are the fundamental class of fusion rings, categorified by the corresponding fusion categories of complex representations. The category of $ \mathbb{Z}_+ $-modules of finite rank over such a representation ring is also semisimple. In this paper, we classify the irreducible based modules of rank up to 5 over the complex representation ring $ r(S_4) $ of the symmetric group $ S_4 $. In total, 16 inequivalent irreducible based modules were obtained. In this process, the MATLAB program was used in order to obtain some representation matrices. Based on such a classification result, we further discuss the categorification of based modules over $ r(S_4) $ by module categories over the complex representation category $ {\rm Rep}(S_4) $ of $ S_4 $ arisen from projective representations of certain subgroups of $ S_4 $.
[1] | J. W. Barrett, B. W. Westbury, Spherical categories, Adv. Math., 143 (1999), 357–375. https://doi.org/10.1006/aima.1998.1800 doi: 10.1006/aima.1998.1800 |
[2] | P. Deligne, J. S. Milne, A. Ogus, K. Y. Shih, Hodge cycles, motives, and Shimura varieties, Springer, 1982. https://doi.org/10.1007/BFb0091634 |
[3] | V. Drinfeld, S. Gelaki, D. Nikshych, V. Ostrik, On braided fusion categories I, Selecta Math., 16 (2010), 1–119. https://doi.org/10.1007/s00029-010-0017-z doi: 10.1007/s00029-010-0017-z |
[4] | P. Etingof, D. Nikshych, V. Ostrik, On fusion categories, Ann. Math., 162 (2005), 581–642. https://doi.org/10.4007/annals.2005.162.581 doi: 10.4007/annals.2005.162.581 |
[5] | P. Etingof, D. Nikshych, V. Ostrik, Weakly group-theoretical and solvable fusion categories, Adv. Math., 226 (2011), 176–205. https://doi.org/10.1016/j.aim.2010.06.009 doi: 10.1016/j.aim.2010.06.009 |
[6] | S. Mac Lane, Categories for the working mathematician, 2 Eds., Springer, 1998. https://doi.org/10.1007/978-1-4612-9839-7 |
[7] | J. Bénabou, Catégories avec multiplication, C. R. Acad. Sci. Paris, 256 (1963), 1887–1890. |
[8] | S. M. Lane, Natural associativity and commutativity, Rice Univ. Stud., 49 (1963), 28–46. |
[9] | D. Ben-Zvi, J. Francis, D. Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc., 23 (2010), 909–966. https://doi.org/10.1090/S0894-0347-10-00669-7 doi: 10.1090/S0894-0347-10-00669-7 |
[10] | P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Fusion categories and homotopy theory, Quantum Topol., 1 (2010), 209–273. https://doi.org/10.4171/QT/6 doi: 10.4171/QT/6 |
[11] | E. Rowell, R. Stong, Z. Wang, On classification of modular tensor categories, Commun. Math. Phys., 292 (2009), 343–389. https://doi.org/10.1007/s00220-009-0908-z doi: 10.1007/s00220-009-0908-z |
[12] | J. Böckenhauer, D. E. Evans, Y. Kawahigashi, Chiral structure of modular invariants for subfactors, Commun. Math. Phys., 210 (2000), 733–784. https://doi.org/10.1007/s002200050798 doi: 10.1007/s002200050798 |
[13] | M. Bischoff, A. Davydov, Hopf algebra actions in tensor categories, Transform. Groups, 26 (2021), 69–80. https://doi.org/10.1007/s00031-020-09560-w doi: 10.1007/s00031-020-09560-w |
[14] | P. Etingof, R. Kinser, C. Walton, Tensor algebras in finite tensor categories, Int. Math. Res. Not., 2021 (2021), 18529–18572. https://doi.org/10.1093/imrn/rnz332 doi: 10.1093/imrn/rnz332 |
[15] | G. Lusztig, Leading coefficients of character values of Hecke algebras, Proc. Symp. Pure Math., 47 (1987), 235–262. https://doi.org/10.1090/pspum/047.2/933415 doi: 10.1090/pspum/047.2/933415 |
[16] | P. Etingof, M. Khovanov, Representations of tensor categories and Dynkin diagrams, Int. Math. Res. Not., 1995 (1995), 235–235. https://doi.org/10.1155/S1073792895000183 doi: 10.1155/S1073792895000183 |
[17] | V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups, 8 (2003), 177–206. https://doi.org/10.1007/s00031-003-0515-6 doi: 10.1007/s00031-003-0515-6 |
[18] | P. Etingof, V. Ostrik, Finite tensor categories, J. Mosc. Math., 4 (2004), 627–654. https://doi.org/10.17323/1609-4514-2004-4-3-627-654 doi: 10.17323/1609-4514-2004-4-3-627-654 |
[19] | H. X. Chen, F. V. Oystaeyen, Y. Zhang, The green rings of Taft algebras, Proc. Amer. Math. Soc., 142 (2014), 765–775. https://doi.org/10.1090/s0002-9939-2013-11823-x doi: 10.1090/s0002-9939-2013-11823-x |
[20] | H. L. Huang, F. V. Oystaeyen, Y. Yang, Y. Zhang, The green rings of pointed tensor categories of finite type, J. Pure Appl. Algebra, 218 (2014), 333–342. https://doi.org/10.1016/j.jpaa.2013.06.005 doi: 10.1016/j.jpaa.2013.06.005 |
[21] | L. Li, Y. Zhang, The green rings of the generalized Taft Hopf algebras, Contemp. Math., 585 (2013), 275–288. https://doi.org/10.1090/conm/585/11618 doi: 10.1090/conm/585/11618 |
[22] | Z. Wang, L. Li, Y. Zhang, Green rings of pointed rank one Hopf algebras of nilpotent type, Algebras Represent. Theory, 17 (2014), 1901–1924. https://doi.org/10.1007/s10468-014-9484-9 doi: 10.1007/s10468-014-9484-9 |
[23] | Z. Wang, L. Li, Y. Zhang, Green rings of pointed rank one Hopf algebras of non-nilpotent type, J. Algebra, 449 (2016), 108–137. https://doi.org/10.1016/j.jalgebra.2015.11.002 doi: 10.1016/j.jalgebra.2015.11.002 |
[24] | S. J. Witherspoon, The representation ring of the quantum double of a finite group, J. Algebra, 179 (1996), 305–329. https://doi.org/10.1006/jabr.1996.0014 doi: 10.1006/jabr.1996.0014 |
[25] | V. Ostrik, Fusion categories of rank 2, Math. Res. Lett., 10 (2003), 177–183. https://doi.org/10.4310/MRL.2003.V10.N2.A5 doi: 10.4310/MRL.2003.V10.N2.A5 |
[26] | S. Burciu, On the Grothendieck rings of generalized Drinfeld doubles, J. Algebra, 486 (2017), 14–35. https://doi.org/10.1016/j.jalgebra.2017.05.019 doi: 10.1016/j.jalgebra.2017.05.019 |
[27] | F. Calegari, S. Morrison, N. Snyder, Cyclotomic integers, fusion categories, and subfactors, Commun. Math. Phys., 303 (2011), 845–896. https://doi.org/10.1007/s00220-010-1136-2 doi: 10.1007/s00220-010-1136-2 |
[28] | V. Ostrik, Pivotal fusion categories of rank 3, J. Mosc. Math., 15 (2015), 373–396. https://doi.org/10.17323/1609-4514-2015-15-2-373-396 doi: 10.17323/1609-4514-2015-15-2-373-396 |
[29] | D. E. Evans, T. Gannon, Near-group fusion categories and their doubles, Adv. Math., 255 (2014), 586–640. https://doi.org/10.1016/j.aim.2013.12.014 doi: 10.1016/j.aim.2013.12.014 |
[30] | M. Izumi, A Cuntz algebra approach to the classification of near-group categories, arXiv, 2017. https://doi.org/10.48550/arXiv.1512.04288 |
[31] | C. Yuan, R. Zhao, L. Li, Irreducible $\mathbb{Z}_+$-modules of near-group fusion ring $K\left(\mathbb Z_3, 3\right)$, Front. Math. China, 13 (2018), 947–966. https://doi.org/10.1007/s11464-018-0709-9 doi: 10.1007/s11464-018-0709-9 |
[32] | P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories, Amer. Math. Soc., 2015. https://doi.org/10.1090/surv/205 doi: 10.1090/surv/205 |
[33] | C. Jones, S. Morrison, D. Nikshych, E. Rowell, Rank-finiteness for $G$-crossed braided fusion categories, Transform. Groups, 26 (2021), 915–927. https://doi.org/10.1007/s00031-020-09576-2 doi: 10.1007/s00031-020-09576-2 |
[34] | J. Schur, Über die Darstellung der endlichen Gruppen durch gebrochen lineare substitutionen, J. Reine Angew. Math., 127 (1904), 20–50. https://doi.org/10.1515/crll.1904.127.20 doi: 10.1515/crll.1904.127.20 |
[35] | C. Cheng, A character theory for projective representations of finite groups, Linear Algebra Appl., 469 (2015), 230–242. https://doi.org/10.1016/j.laa.2014.11.027 doi: 10.1016/j.laa.2014.11.027 |
[36] | G. Karpilovsky, The Schur multiplier, Oxford University Press, 1987. |
[37] | B. Sagan, The symmetric group: representations, combinatorial algorithms, and symmetric functions, 2 Eds., Springer, 2001. https://doi.org/10.1007/978-1-4757-6804-6 |
[38] | G. Karpilovsky, Group representations, North Holland Publishing Corporation, 1993. |
[39] | D. G. Robbins, E. Sharpe, T. Vandermeulen, A generalization of decomposition in orbifolds, J. High Energy Phys., 2021 (2021), 134. https://doi.org/10.1007/JHEP10(2021)134 doi: 10.1007/JHEP10(2021)134 |
[40] | G. Karpilovsky, Projective representations of finite groups, Marcel Dekker, 1985. |
[41] | P. N. Hoffman, J. F. Humphreys, Projective representations of the symmetric groups: Q-functions and shifted tableaux, Oxford University Press, 1992. https://doi.org/10.1093/oso/9780198535560.001.0001 |
[42] | S. Ramgoolam, E. Sharpe, Combinatoric topological string theories and group theory algorithms, J. High Energy Phys., 2022 (2022), 147. https://doi.org/10.1007/JHEP10(2022)147 doi: 10.1007/JHEP10(2022)147 |