AIMS Mathematics, 9(7): 19859—-19887.
DOI: 10.3934/math.2024970
AIMS Mathematics Received: 22 April 2024

Revised: 28 May 2024

Accepted: 31 May 2024
https://www.aimspress.com/journal/Math Published: 19 June 2024

Research article

Classification of irreducible based modules over the complex representation
ring of S 4

Wenxia Wu and Yunnan Li*
School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
* Correspondence: Email: ynli@gzhu.edu.cn.

Abstract: The complex representation rings of finite groups are the fundamental class of fusion rings,
categorified by the corresponding fusion categories of complex representations. The category of Z, -
modules of finite rank over such a representation ring is also semisimple. In this paper, we classify
the irreducible based modules of rank up to 5 over the complex representation ring r(S4) of the
symmetric group S4. In total, 16 inequivalent irreducible based modules were obtained. In this
process, the MATLAB program was used in order to obtain some representation matrices. Based
on such a classification result, we further discuss the categorification of based modules over r(S4)
by module categories over the complex representation category Rep(S4) of S, arisen from projective
representations of certain subgroups of § 4.
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1. Introduction

Tensor categories should be thought as counterparts of rings in the world of categories [1-3], 1.e.,
the categorification of groups and rings [4-6]. They are ubiquitous in noncommutative algebra and
representation theory. Tensor categories were introduced by Bénabou [7] in 1963 and Lane [8] as
“categories with multiplication”, and its related theories are now widely used in many fields of
mathematics, including algebraic geometry [9], algebraic topology [10], number theory [11], operator
algebraic theory [12], etc. The theory of tensor categories is also seen as a development following
from that of Hopf algebras and their representation theory [13, 14]. As an important invariant in the
theory of tensor categories, the concept of a Z,-ring can be traced back to Lusztig’s work [15] in
1987. Later, in [16, 17], the notion of a Z,-module over a Z,-ring was introduced. Module categories
over multitensor categories were first considered in [4, 18], and then the notion of an indecomposable
module category was introduced in [17]. As a categorification of irreducible Z,-modules, it is
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interesting to classify indecomposable exact module categories over a given tensor category. In this
process, it is often necessary to first classify all irreducible Z,-modules over the Grothendieck ring of
a given tensor category.

Typical examples of Z.-rings are the representation rings of Hopf algebras [19-24]. Another
example is the Grothendieck rings of tensor categories [25-28]. It is natural to consider the
classification of all irreducible Z,-modules over them. For example, Etingof and Khovanov classified
irreducible Z,-modules over the group ring ZG, and showed that indecomposable Z,-modules over
the representation ring of SU(2), under certain conditions, correspond to affine and infinite Dynkin
diagrams [16]. Also, there is a lot of related research in the context of near-group fusion categories.
For instance, Tambara and Yamagami classified semisimple tensor categories with fusion rules of
self-duality for finite abelian groups. Evans, Gannon, and Izumi have contributed to the classification
of the near-group C*-categories [29, 30]. Yuan et al. [31] studied irreducible Z,-modules of the
near-group fusion ring K (Z3, 3) and so on.

In this paper, we explore the problem of classifying irreducible based modules of rank up to 5
over the complex representation ring r(S 4), and then discuss their categorification. Furthermore, we
overcome the technical difficulty of solving a series of non-negative integer equations using MATLAB.
In contrast with the representation ring of S3, (S ,) is no longer a near-group fusion ring when n > 3,
and the classification of irreducible Z,-modules over general r(S ,,) seems to be a hopeless task. Hence,
our paper attempts to classify irreducible based modules for the non-near-group fusion ring (S 4). In
fact, the fusion rule of r(S,) is already a highly nontrivial open problem in combinatorics, namely
counting the multiplicities of irreducible components of the tensor product of any two irreducible
complex representations of S, (so called the Kronecker coefficients).

The paper is organized as follows. In Section 2, we recall some basic definitions and propositions.
In Section 3, we discuss the irreducible based modules of rank up to 5 over r(S4) and give the
classification of all these based modules (Propositions 3.1-3.5). In Section 4, we first show that any
Z,-module over the representation ring r(G) of a finite group G categorified by a module category
over the representation category Rep(G) should be a based module (Theorem 4.2), and then determine
which irreducible based modules over (S 4) can be categorified (Theorem 4.12).

2. Preliminaries

Throughout this paper, all rings are assumed to be associative with unit 1. Let Z, denote the set
of nonnegative integers. First, we recall the definitions of Z,-rings and Z,-modules. For more details
about these concepts, readers can refer to [17,32].

2.1. Z,-rings and Z,-modules

In this section, we first recall some definitions, and then we exhibit a class of identities for
transposed Poisson n-Lie algebras.

Definition 2.1. Let A be a ring which is free as a Z-module:

(i) A Z,-basis of A is a basis
B = {bi}iel >
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such that

bibj = ) kb,

kel
where cﬁ.‘j €Z,.

(ii) A Z,-ring is a ring with a fixed Z.-basis and with unit 1 being a non-negative linear combination
of the basis elements.

(iii) A Z,-ring is unital if the unit 1 is one of its basis elements.

Definition 2.2. Let A be a Z,-ring with basis {b;};c;. A Z.-module over A is an A-module M with a
fixed Z-basis {m;},c; such that all the structure constants af.‘l, defined by the equality

_ k
biml = Z a;ny
k

are non-negative integers.
A Z.-module has the following equivalent definition referring to [32, Section 3.4].

Definition 2.3. Let A be a Z,-ring with basis {b;},;. A Z.-module M over A means an assignment
where each basis b; in A is in one-to-one correspondence with a non-negative integer square matrix
M; such that M forms a representation of A:

MiM; =" ciiMy, Vi, jkel,
kel
where the unit of A corresponds to the identity matrix. The rank of a Z.-module M is equal to the order
of the matrix M,.

Definition 2.4. (i) Two Z.-modules M,, M, over A with bases {m}} 2

ieLl’{ j}jeLz
only if there exists a bijection ¢: L, — L, such that the induced Z-linear map ¢ of abelian groups
M, M, defined by

are equivalent if and

oAy _ 2
d(m;) = My
is an isomorphism of A-modules. In other words, for a € A, let ay, and ay, be the matrices with respect

to the bases {m.1 } and {m?}jd , respectively. Then, two Z,-modules M, M, of rank n are equivalent
14 1 2

tieL

if and only if there exists an n X n permutation matrix P such that
ay, = Pay, P, Va € A.

(ii) The direct sum of two Z,-modules M,, M, over A is the module M, & M, over A whose basis is
the union of the bases of My and M,.

(iii) A Z,-module M over A is indecomposable if it is not equivalent to a nontrivial direct sum of
Z.-modules.

(iv) A Z,-submodule of a Z.-module M over A with basis {m;},c; is a subset J C L such that the

abelian subgroup of M generated by {m j}jej is an A-submodule.

(v) A Z,-module M over A is irreducible if any Z,-submodule of M is 0 or M. In other words, the
Z-span of any proper subset of the basis of M is not an A-submodule.
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2.2. Based rings and based modules

Let A be a Z,-ring with basis {b;};;, and let I, be the set of i € I such that b; occurs in the
decomposition of 1. Let 7: A — Z denote the group homomorphism defined by

1, 1if i€l
7(b;) = ,
0, if i ¢ I().

Definition 2.5. A Z,-ring with basis {b;},.; is called a based ring if there exists an involution i — i* of

I such that the induced map
a= Z(l,’b,’ —a = Zaibi*, a;, €7,

iel iel

is an anti-involution of the ring A, and

1, ifi=j,

A fusion ring is a unital based ring of finite rank.

Definition 2.6. A based module over a based ring A with basis {b;};c; is a Z.-module M with basis
{m;},c; over A such that
diy = s

where aﬁ.‘l are defined as in Definition 2.2.

Let A be a unital Z,-ring of finite rank with basis {b;},;, and let M be a Z,-module over A with
Z-basis {m;},c;. Take
b= b

i€l
For any fixed my,, the Z,-submodule of M generated by m;, is the Z-span of {my};.y, where the set Y
consists of k € L such that my is a summand of bmy;,. Also, we need the following facts.

Proposition 2.1. [32, Proposition 3.4.6] Let A be a based ring of finite rank over Z. Then there exist
only finitely many irreducible Z,-modules over A.

Proposition 2.2. [17, Lemma 2.1] Let M be a based module over a based ring A. If M is decomposable
as a Z..-module over A, then M is irreducible as a Z.-module over A.

As a result, any Z,-module of finite rank over a fusion ring is completely reducible, and then only
irreducible Z,-modules need to be classified.

In general, the rank of an irreducible Z,-module over a fusion ring A may be larger than the rank
of A; e.g., A = r(Ds) for the dihedral group D5 ([33, Remark 1]). In this paper, we explore which
irreducible based modules over r(S4) can be categorified by indecomposable exact module categories
over the representation category Rep(S,4). Since all these module categories are of rank not greater
than 5, we only deal with based modules of rank up to 5 correspondingly.
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3. Irreducible based modules over 7(S,)

In this section, we will classify the irreducible based modules over the complex representation ring
r(S4) of S 4 up to equivalence. r(S4) is a commutative fusion ring having a Z, -basis {1, Vi Vor, Voos Vm}
with the fusion rule.

V2

" = 1, V¢Vpl = Vpl’ Vl/,V

= V,Ds’ Vp21 =1+ Vlﬂ + Vm’

3.1
_ 2 _
Vplvpz - sz + V/J3’ sz =1+ Vpl + sz + V,03’
where 1, V,, and V, denote the trivial representation, sign representation, and 2-dimensional
irreducible representation, respectively, while V,, stands for the 3-dimensional standard
representation and V,, denotes its conjugate representation. Then we have the following Table 1.

Table 1. The complex character table of S .

1) (12) (123) (1234) (12)(34)
1 1 1 1
-1 1 -1 1

2

1 0 -1 -1

-1 0 1 -1

~

X1

X
XPl
Xp2
Xps

W W N = =
=
|
—_
e

Let M be a based module of r(S,) with the basis {m;},c;. Let T, Q, U, and W be the matrices
representing the action of Vy, V,,, V,,, and V,, on M respectively. They are all symmetric matrices
with nonnegative integer entries by Definition 2.6. Let E be the identity matrix. By the fusion rule of
r(S4), we have

T’ = E, (3.2)
TO=0T =0, (3.3)
TU =UT =W, (3.4)
Q*=E+T+0, (3.5)
QU=U+TU, (3.6)
U'=E+Q+U+TU. (3.7)

In particular, since 72 = E and T has nonnegative integer entries, we know that T is a symmetric
permutation matrix.

Convention 3.1. Let P, be the group of n X n permutation matrices. Since there is naturally a group
isomorphism between S, and P,, we will use the cycle notation of permutations to represent
permutation matrices.

3.1. Irreducible based modules of rank < 3 over r(S 4)

We define a Z,-module M, ; of rank 1 over r(S 4) by letting

Ve 1, V, 2, V,>3, V, 3 (3.8)
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Proposition 3.1. Any irreducible based module of rank 1 over r(S 4) is equivalent to M, ;.

Proof. Note that any integral fusion ring A has the unique character FPdim: A — 7Z, which takes non-
negative values on the Z,-basis, so there exists a unique Z,-module M of rank 1 over it. Clearly, such
M is a based module. Now this argument is available for the situation A = (S ). O

Next, we consider irreducible based modules of rank 2,3. According to the fusion rule of r(S,)
given in (3.1), it is sufficient to only list the representation matrices of V,,, V,,, and V,, acting on them.
For simplicity, we choose to present our result for the cases of small rank 2 and 3 directly, and then
analyze the cases of higher rank 4 and 5 with details.

Proposition 3.2. Let M be an irreducible based module of rank 2 over r(S4). Then M is equivalent to
one of the based modules M,;, 1 <i <3, listed in Table 2.

Table 2. Inequivalent irreducible based modules of rank 2 over r(S 4).

Vy Vpl sz
10 20 12
Mo (0 1) 0 2) 2 1

0 1
M, (1 0)

0 1
M (1 o)

—_—
—_
S~

|
|
|

—
—_ N N =
Ne—  —

11
11

Proposition 3.3. Let M be an irreducible based module of rank 3 over r(S 4). Then M is equivalent to
one of the based modules Ms;, 1 <i < 3, listed in Table 3.

Table 3. Inequivalent irreducible based modules of rank 3 over r(S 4).

vy Vi Vin
100 0 1 1 111
M;, 010 101 111
00 1 110 111
010 00 1 101
M;, 100 00 1 01 1
00 1 111 112
010 00 1 01 1
M 100 00 1 101
00 1 111 112

3.2. Irreducible based modules of rank 4, 5 over r(S 4)

Proposition 3.4. Let M be an irreducible based module of rank 4 over r(S 4). Then M is equivalent to
one of the based modules My;, 1 <i <7, listed in Table 4.
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Table 4. Inequivalent irreducible based modules of rank 4 over r(S 4).

Vp 1 VPZ
0

[«

My,

My,

Mys

My

M,

Mys

My

el elell JleleNell L sRelaelBell i eRelh e lelell lelelNell O =Rl
— —_ OO = OO~ OO ONOOONOOONO O —O o
— —_ O O~ P OO~~~ OO NhNOOoOONMNOOoOO VOO OO—O
— e = O = = O = = = O = b= = O = = e = O = = O = = N e

1
0
0
0
1
1
1
1
0
1
1
0
1
1
1
0
1
1
1
0
1
1
1
1
0
1
1

OO'—OOO'—‘OOO'—‘OOOHOOO'—‘OOOO'—‘OOO'ds
S OO P O OO PO OO RO OO0, OOo—O oo —~O0o
=N o elelBel S eole Rl elel el el e ol Nl el Rl el
SO R P OO R P OO, P OO, P OO, ~,OOONN—~~O

SO P P OO, OO —~R, P OO, P OO, ~,OONOOOoONDOo
O = == O === = O OO O == 00 =0
—_ O = = = O = O = e = O = O e e O = = = OO = O

Proof. Before giving its detailed proof, we provide the following proof outline first.

(i) The symmetric group S4 has 3 conjugacy classes of permutations of order < 2, so there are 3
representatives for matrix 7" up to conjugation as follows:

T,=Ey, T,=(2), T;=(12)(34).

Consequently, we can take T = T, for some r = 1,2, 3 as the representation matrix of V, for the
based module M up to equivalence.

(i1) Use MATLAB to search all solutions of the representation matrices Q and U in the group of
nonnegative integer matrix Eqs (3.3)—(3.7) by constraint satisfaction.

(ii1) Distinguish all conjugacy classes of tuples (7, Q, U) without simultaneous block decomposition.
They correspond to the equivalence classes of irreducible based modules over (S 4).

Proof. Let M be a based module of rank 4 over r(S 4), with the action of r(S4) on it given by
Ve T, V, = 0=(aijsij4» Vo, = U= bijcijca, Vo> W=TU,

AIMS Mathematics Volume 9, Issue 7, 19859-19887.
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where a;; = aj;, bjj = bj;.

The symmetric group S 4 has two conjugacy classes of permutations of order 2. One conjugacy class
of 6 permutations includes (12), and the other one of 3 permutations includes (12)(34). As previously
seen, 7 is the unit or an element of order 2 in P4, so we have 10 candidates for T', and each of them is
conjugate to one of the following 3 matrices:

T,=FE,, T,=(2), T;=(12)(34).

Hence, for the based module M determined by the pair (7, Q, U), there exists a 4 X 4 permutation

matrix P such that
T’ = PTP!

is one of the above 7T,’s (1 < r < 3). Correspondingly, let
Q' =PQP"', U =PUP".

Then we get a based module M’ determined by the pair (77, Q’, U’) and equivalent to M as based
modules by Definition 2.4 (i). So, we have reduced the proof to the situation when 7" = T,.

Casel. T =T, = E4.
Since Q satisfies Eq (3.5), we obtain the following system of integer equations:

a +d,+a,+al, =2+ap,
aplap + apdy + apas + ajpdy = a,
a)agz + apax + a;zass + aiudss = as,
a11a14 + aparg + a13a34 + a14a44 = ays,
as, + a5, + a3, + a5, = 2 + an,
a1pa13 + axazs + ax3aszz + axdss = ass,
12014 + Axnag + A23a34 + A24aA44 = A4,
a% + a§3 + a§3 + a§4 =2+ ass,
a13a14 + ax3a24 + 433034 + A34044 = A34,
a, + a3, +as, +ag, =2+ au.

We use MATLAB to figure out all the solutions of Q as follows:

0011 0101 0110
0200 1 001 1010
Q=1 001 20020 ©7|[1 10 of
1010 1100 0002
2000 2000
0011 0200
Q=g 101" €700 2 ol
0110 0002

Next, we calculate U after taking Q as one Q; (1 <k <5).

Case1.1. 0 = 0.

AIMS Mathematics Volume 9, Issue 7, 19859-19887.
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Since U satisfies Eq (3.6), we get

Then, by Eq (3.7), we have

3b%1 + b%z =2by; + 1,

b1y = by = by,
bi1 = bi3 = by = b33 = b3y = by.

3b11b12 + b1abyy = 2by,,

312, + b2, = 2by + 3.

2

The solutions of U given by MATLAB are as follows:

0100
1 211

Note that there exists a permutation matrix P = (14)(23) such that
PO\P = 0.

Let

U1:

0

1

0 of

0100

It is easy to check that the based module determined by (7, Q;, U;) is an irreducible based module
denoted as M, ;, while the based module determined by (7', Oy, U,) is reducible.

U, = PU P

U2:

1

1
0
1

0
3
0

0

—_—_ O =

—_— O =

1

There is an irreducible based module N’ determined by the pair (7’1, Q», U}) and equivalent to M, ; by
Definition 2.4 (1). Conversely, any irreducible based module with representation matrices 7 and Q,
is equivalent to M, ;. The same analysis tells us that irreducible based modules with representation
matrices 7'} and Q3 (or Q) are also equivalent to My ;.

Case 1.2. Q = Qs.

Since U satisfies Eqgs (3.6) and (3.7), we get a system of integer equations as follows:

Thus, the solutions of U by MATLAB are as follows:

01

1 0

V=11

1 1

AIMS Mathematics

1

1
0
1

0

SN =

0

S = N

0
0 b
1

S o =

bi, + b}, + b1, + b, = 2by; + 3,
b11b12 + bi2boy + b13by3 + D1abyy = 2bys,
b11b13 + biobos + b13bs3 + biabzy = 2by3,
b11b14 + b1oboy + b13b3s + b1absy = 2byy,
bty + b3, + b3, + b3, = 2by + 3,
b12b13 + byyboz + bazbsz + boabzy = 2bys3,
b12b14 + byyboy + bozbss + bosbay = 2byy,
bty + b3y + b3, + b3, = 2b33 + 3,
b13b14 + by3boy + b3zbss + b3sbsy = 2bsg,
b3, + b3, + b3, + by, = 2bsy + 3.

N O = O

S = O

S O =N
DNV = OO
—_ N O O
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1020 1 002
0300 0300
Us=12 01 0" Yo 0 3 ol
0003 20 0 1
3000 3000
0120 010 2
Y=lop 2 1 o] Y"=|o 0 3 o
0003 020 1

Uy

Un =

=

0 0
00
30
0 3

S O W o

1 2
2 1
00
00

S W oo

30 0
0 3 0
00 o
00 3

N - O O

—_ N O O

Since T, and Qs are diagonal and the solutions U, (2 <t < 11) are block diagonal with at least two

blocks, only the based module determined by (7'}, QOs, U,) is irreducible, denoted as My 5.

Case2. T =T, = (12).

Since Q satisfies Eq (3.3), we get

an
aj
as
aiy

as
as
ass
sy

ajy
aig
as |’
ay4

Since Q also satisfies Eq (3.5), we have the following system of integer equations:

Hence, the solutions of Q by MATLAB are as follows:

0001

0001
Q=lg 0 2 of &7

1 101

Since U satisfies Eq (3.4), we get
bi
b1
U =

b3
b4

S~ O O
o = O O

2
b
by3
b4

O = = =

b3
b3
b33
b4

N O OO

Next, we calculate U after taking Q as one O (1 <k < 3).

Case 2.1. 0 = 0.

AIMS Mathematics

2a%1 + a% + aﬁ =ap +1,
2ay1a13 + apzazz + aj4az, = ags,
2a11a14 + A13034 + Q14044 = 14,
261%3 + a§3 + a§4 =ax + 2,
2a13a14 + A33034 + Q34044 = A34,
Za%4 + a§4 + afm = Qu4 + 2.

1100
1100

D=1y 0 2 ol
000 2

by

b14

ba |

bas
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Since U satisfies Eqs (3.6) and (3.7), the solutions of U given by MATLAB are as follows:
1

00 1
0101
V2510 0 3 ol
1102

Since T5, Q; and all the solutions U, for t = 1,2 are block diagonal with at least two blocks, the based
modules determined by each pair (73, Q,, U,) are reducible.
Note that there exists a permutation matrix P = (12)(34) such that

PQOP' = Q..

Let
U/ =PUP™".

Then each based module N, determined by the pair (7%, Q,, U,) is reducible. Namely, any based module
with representation matrices 7, and Q, is reducible.

Case 2.2. Q = Q5.
Since U satisfies Eqs (3.6) and (3.7), we have

0111 1011 1 200
1 011 0111 2100
U1‘1101’U2‘1101’U3‘0012’
1110 1110 002 1
1 200 2100 2100
2100 1 200 1 200
Us=lo o3 0" Yoo 1 21 Y““loo 3 ol
0003 0021 000 3

Since T,, Q3 and the solutions U (3 < s < 6) are block diagonal with at least two blocks, only the
based module determined by (7%, O3, U;) and (7>, O3, U,) are irreducible, denoted as M, 3 and M4,
respectively. It is easy to check that M, 3 and M, 4 are inequivalent based modules.

Case 3. T =T3 = (12)(34).
Since Q satisfies Eq (3.3), we get

a dpip aiz apss
a dip aiz aps
aiz a3 az as|
aj;z apz dsz ass

Then, by Eq (3.5), we have the following system of integer equations:

Za%1 + Za%3 =ap + 1,
2a1a13 + 2a13a33 = a3,
2af3 + 2a§3 =as3 + 1.

AIMS Mathematics Volume 9, Issue 7, 19859-19887.
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Q has the following unique solution:

—_——_= O O
—_—— O O

©

Il
SO = =
S O ==

Since U satisfies Eq (3.4), we get

biy by b1z by
b2 by b bis

bis by bz bay|

bis bz b3y b33

Since U also satisfies Eqs (3.6) and (3.7), we obtain the solutions of U by MATLAB as follows:

0111 0111 1 011 1011
1 01 1 1 01 1 0111 0111
U=ty o1l YTlhirrol BTlirrol YT o0l
1110 1101 1101 1110
1200 1200 2100 2100
2100 2100 1 200 1 200
U=loo1 2" Y““loo21]" “Sloo 1 21" Y loo 21l
0021 001 2 0021 0012

Clearly, T3, Q; and the solutions U, are block diagonal with at least two blocks, but the based module
determined by the pair (73, O, U,) is irreducible, denoted as My, where 5 < s < 8,1 <t < 4. Define
the Z-module isomorphism ¢: Mys — Mg by

dvD =i, By =13, d(vy) =15, (v =7

It is easy to see that M, ¢ is equivalent to M4z as based modules over r(S4) under ¢. Then, we can
check that {M, ;};_,_; are inequivalent irreducible based modules. O

Finally, we construct two based modules Ms; (i = 1,2) over r(S4) with the actions of r(S 4) on them
presented in Table 5.

Table 5. Inequivalent irreducible based modules of rank 5 over (S 4).

Vw Vm sz
01000 00O0O01 00O0T1O0
10000 00O0O01 00100
Ms 00O0T1O0 00110 o1 111
00100 00110 10111
00001 110 0 1 00110
01000 11000 00011
10000 11000 00101
Ms, 00O0T1O0 00110 01001
00100 00110 1 0001
00O0O01 00O0O02 11111
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Proposition 3.5. Let M be an irreducible based module of rank 5 over r(S ;). Then M is equivalent to
one of the based modules Ms; (i = 1,2), listed in Table 5.

Proof. Let M be a based module of rank 5 over r(S 4), with the action of r(S4) on it given by
Vo T, V, > Q=(aijh<js, Vo P U=(bijzijs, Vo, > W=TU,

where a;; = aj;, bjj = bj;.
First, by a similar argument applied in the case of rank 4, we only need to deal with one of the
following 3 cases for T':
T,=Es, T,=(2), T;=(12)(34).

Casel. T =T, = Es.

There are 11 solutions of Q satisfying Eq (3.5), but only two conjugacy classes by permutation
matrices with their representatives given as follows:

01100 20000
10100 02000
o,=|1 1000, 0,=[l0 020 0]
00020 00020
00002 0000 2

Next, we calculate U after taking Q as one Qy (k = 1,2).
Case 1.1. 0 = Q.
There are 4 solutions of U satisfying Eqgs (3.6) and (3.7) as follows:

00010 00001 1 1100 11100
00010 00001 1 1100 1 1100
U =0 0 01 0|, Ua=(0 0 0 0 If, Us=|1 1 1 0 Of, Us=|1 1 1 0 Of.
11120 000360 00030 00 O0T12
0 00O0S3 1 1102 0 00O03 0 0021

Case 1.2. 0 = 0,.

There are 31 solutions of U satisfying Eqs (3.6) and (3.7), but only 4 conjugacy classes by
permutation matrices and their representatives as follows:

01110 1 0020 1 2000 30000
1 0110 01200 21000 03000
U=[1101 0|, Uao=(0 2 1 0 Of, Us=|0 0 3 0 Of, Us=|0 0 3 0 Of.
1 1100 20010 00030 00O030P0
0 00O0S3 000O03 0 00O03 0 00O0S3

Each pair (T, Qy, U,) above determines a based module, but is not irreducible for any 1 < r < 4.

Case2. T =T, =(12).
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There are 5 solutions of Q satisfying Eq (3.5), but only 3 conjugacy classes with the following
representatives:

0 00O 1 1 1000 1 1.0 00
0 00O01 1 1000 1 1000
;=0 0 2 0 0], @,=10 0 O 1 1], ©3=]0 0 2 0 O
00020 00101 00020
1 1 0 0 1 00110 0 00O02
Next, we calculate U after choosing Q.
Case 2.1. Q = 0.
There are 4 solutions of U satisfying Eqs (3.6) and (3.7) as follows:
01001 01001 1 00 01 1 00 01
1 00 01 1 00 01 01001 01001
U =0 01 2 0f, U={0 0 3 0 Of, Us=10 O 1 2 O], Us=|0 0 3 0 O
00210 00030 00210 00030
I 100 2 1100 2 1 100 2 I 100 2
Case 2.2. 0 = Q».

There are 2 solutions of U satisfying Eqs (3.6) and (3.7) as follows:

1 2000 21000
21000 1 2000
U ={0 01 1 1], U=(0 0 1 1 1
00111 00111
00111 00111

Case 2.3. 0 = 0;.

There are 14 solutions of U satisfying Eqs (3.6) and (3.7), but only 6 conjugacy classes by
permutation matrices with their representatives given as follows:

01110 10110 1 2000
1 01 10 01110 21000
uy=(1 101 0|, Uy=|110120f, U;=|0 01 2 0},
1 1100 11100 00210
00O0O03 00O0O03 00O0O03
21000 1 2000 21000
1 2000 21000 1 2000
Us={0 01 2 0], Us=|0 0 3 0 Of, Us=|0 0 3 0 0O].
00210 000320 00O030P0
0 00O0S3 000O03 0 00O0S3

Through analysis, all based modules derived from Case 2 are reducible.
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Case3. T =T; = (12)(34).

There are 3 solutions of Q satisfying Eq (3.5) as follows:

0 00O01 1 1000 1 1.0 00
0 00O01 1 1000 11000
o,=|0 01 1 0|, Q=100 1 1 0], @3=]0 0 0 0 1].
00110 00110 0 00O01
1 1001 00002 00111
Next, we calculate U after fixing Q.
Case3.1. Q= 0.
There are 6 solutions of U satisfying Eqs (3.6) and (3.7) as follows:
0 00T1PO 00100 01001
00100 00010 1 00 01
u=101 111, Uy={1 01 1 1|, Us=|0 0 1 2 0f,
1 0111 01111 00210
00110 00110 1100 2
01 001 1 0 0 01 1 0 0 01
1 00 01 01001 01001
Us=|0 0 2 1 0, Us=|0 0 1 2 0], Usg=]|0 0 2 1 0].
00120 002120 00120
1 100 2 1100 2 1 100 2

Each pair (T3, Q1, U,) (1 < r < 6) above determines a based module, but only the based modules with
representation matrices U; and U, are irreducible. Such two irreducible based modules are denoted by

Ms, and My, with the corresponding Z-basis {v’f VA VAV vlg} for k = 1,2, respectively. Define the

Z-module isomorphism ¢: Ms; — M5, by

pv) =vi ey =vy, P(vy)=vi, s=1,2,5
Then it is easy to see that Ms ; is equivalent to M5, as based modules over r(S4) under ¢.

Case 3.2. 0 = 0,.

There are 10 solutions of U satisfying Eqs (3.6) and (3.7), but only 7 conjugacy classes with their
representatives given as follows:

00 O0T11 01110 01110 10110
00101 10110 1 0110 01110
U =0 1 0 0 1|, U=(1 1 01 0], Us=f1 1 1 0 Of, Us=(1 1 1 0 0O},
1 0001 11100 11010 11010
1 1111 00O0O03 00O0O03 00O0O03
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1 2000 1 2000 21000
21000 21000 1 2000
Us=[0 01 2 0], Us=|{0 0 2 1 O], U;=(0 0 2 1 O].
00210 00120 00120
0 00O03 000O03 0 00O0S3

Each pair (T3, Q,, U,) (2 <t <7) above determines a based module, but only the based module with
representation matrix U is irreducible. We denote it by Ms 5.

Also, the based modules obtained by taking Q = Qs are equivalent to the based module M5 ; found
in Case 3.1. o

4. Categorified based modules by module categories over Rep(S )

In this section, we will apply the knowledge of module categories over the complex representation
category of a finite group to find which based modules over r(S4) can be categorified by module
categories over the representation category Rep(S4) of S4. For the details about module categories
over tensor categories, see, e.g., [32, Section 7].

First, we recall the required result for the upcoming discussion. For any finite group G, the second
cohomology group H*(G,C") is known to be a finite abelian group called the Schur multiplier and
classifies central extensions of G. The notion of a universal central extension of a finite group was first
investigated by Schur in [34].

Let Rep(G, @) denote the semisimple abelian category of projective representations of G with the
multiplier & € Z*(G,C*). Equivalently, Rep(G, @) is the representation category of the twisted group
algebra CG,, of G with multiplication

8 o h= a(g, h)gh, g,h eG.

In particular,
Rep(G, @) = Rep(G),

when taking @ = 1.
Let @ € Z*(G, C*) represent an element of order d in H*(G, C*). Define

d-1
Rep”(G) = P Rep(G. a).
=0

According to the result in [35], we know that Rep”(G) becomes a fusion category with the tensor
product of two projective representations in Rep(G,a’) and Rep(G,a’) respectively lying in
Rep(G, a'*/), and the dual object in Rep(G, &) lying in Rep(G, a?~"). Correspondingly, we have the

fusion ring
d-1

r(G) = @ "G, ). 4.1)

Jj=0
Now let H be a subgroup of G and a € Z*(H, C*). The category Rep(H, ) is a module category
over Rep(G) by applying the restriction functor Res%: Rep(G) — Rep(H).
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Theorem 4.1. [17, Theorem 3.2] The indecomposable exact module categories over the representation
category Rep(G) are of the form Rep(H, a) and are classified by conjugacy classes of pairs (H, [a]).

Consequently, by [32, Proposition 7.7.2], we know the following:

Proposition 4.1. The Grothendieck group
r(H,a) = Gr(Rep(H, a))
is an irreducible Z.,.-module over r(G).

Next, we show that any Z,-module over the complex representation ring r(G) of a finite group G
categorified in this way is a based module.

Theorem 4.2. Let G be a finite group, H a subgroup of G, and a € Z*(H,C*). The Z,-module r(H, c)
over r(G) is a based module.

Proof. Let {y},; be the Z,-basis of r(G). Take r*(H) defined in Eq (4.1) as a Z,-module over r(G)
with the Z-basis {y},c, such that

Vixe = Zagk)(l’ dy € Z,.
7

On the other hand, we write the fusion rule of the fusion ring r*(H) as follows:

N

XiXj= anﬂk’ ”fj €Z,.

k=1

Since the number nf‘} is invariant under cyclic permutations of i, j, k , we have

By the restriction rule, we interpret #(G) as a subring of r*(H) and write down

Y = Z’”iﬂ(j, rij € Z,.
J
Then
i
WiXk = Z FiiX Xk = Z T X

J Jil

By comparing the coeflicients, we see that
I _ I _ ko_ ko_ k o_ ok
a; = Z rijnjk = Z rijnj*l = Z ri*j*nj*] = Z ri*jnﬂ =da;,
J J J J

so r*(H) is a based module over r(G), and r(H, @) is clearly a based submodule of »*(H). Equivalently,
any Z,-module over r(G) categorified by a module category Rep(H, @) over Rep(G) must be a based
module. O
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By Theorem 4.2, we only need to focus on those inequivalent irreducible based modules M; ; over
r(S 4) collected in Section 3, each of which is possibly categorified by a module category Rep(H, ) for
some H < S, and a € Z>(H,C*).

All the non-isomorphic subgroups of the symmetric group S 4 are as follows:
(i) The symmetric group S 3;
(i1) The cyclic groups Z;, 1 <i < 4;
(i11) The Klein 4-group Kj;
(iv) The alternating group Ay;
(v) The dihedral group Dy;
(vi) The symmetric group S, itself.

Correspondingly, the Schur multipliers we consider here are given as follows (see e.g., [36]):
H*(Z,,C") = H*(S5,C") =0, n>1, H*K4,C") = H(Dy,C") = H(A4,C") = H*(S4,C") = Z,.

As a result, we only need to consider the following two situations:
(1) Module category Rep(H) for any subgroup H < S 4;

(2) Module category Rep(H, @) for any subgroup H < S, and nontrivial twist & € Z*(H, C").

4.1. The module categories over Rep(S 4) with trivial twists
(i) First, we consider the representation category Rep(S;) as a module category over Rep(S 4).

Theorem 4.3. r(S3) = Gr(Rep(S3)) is an irreducible based module over r(S4) = Gr(Rep(S4))
equivalent to the based module M, in Table 3.

Proof. According to the branching rule of symmetric groups (see e.g., [37, Theorem 2.8.3]), we have
the following restriction rules:

Restt (1= 1, Res(15) = Resk () =¥ Resk (V)= 1% Resi (1) =1

where y and V denote the sign representation and the standard representation in Rep(S 3), respectively.
Hence, we get the representation matrices of basis elements of r(S4) acting on r(S3) as follows:

010 00 1 101 01 1
1> E;, V,=|1 00|, V,»[001f, v,»|0 11|, V,~[1 0 1[.
00 1 111 112 112

We see that r(S3) is an irreducible based module M3, according to Table 3. In other words, the based
module M;, can be categorified by the module category Rep(S 3) over Rep(S4). O

Remark 4.1. Since the roles of the standard representation and its dual in r(S4) are symmetric, we
can exchange the notations V,, and V,, for them to get the following restriction rules instead:

Resy! (V,,) =x+V, Resg!(V,,)=1+V.
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Therefore, we get another action of r(S 4) on r(S 3) such that r(S3) is an irreducible based module over
(S 4) equivalent to the based module M5 5 according to Table 3. In other words, the based module Ms 5
can also be categorified by the module category Rep(S3) over Rep(S 4).

(i1) Second, we consider Rep(Z,) as a module category over Rep(S4).

Theorem 4.4. r(Z,) = Gr(Rep(Z,)) is an irreducible based module over r(S 4) equivalent to the based
module My s in Table 4.

Proof. Let

Z,={1,8¢" ¢
be the cyclic group of order 4, with four non-isomorphic 1-dimensional irreducible representations
denoted by U;, i = 0,1,2,3. Let Uy = 1 represent the trivial representation, and

xu (@ = V=1, xu,(&)=-1. xu(g=-V-1.

On the other hand, we consider Z, as the subgroup of S, generated by g = (1234). Then, by the
character table of S, (Table 1), we have

xu(8) = (1), xp(g) =1+ (-1),
Xpx(8) = (=1 + (V=1) + (= V=1),,
Xpr(g) = 1+ (V=1) + (= V-1)"
So, the restriction rule of r(S4) on r(Z,) is given as follows:
Res! (1) =1, Resy!(Vy)=Us Resi!(V,)=1+0,,
Res2! (V,,) = Ui+ Uy + Uz,  Resy!(V,,)=1+U; + Us.
Then, we get the representation matrices of basis elements of (S 4) acting on r(Z,) as follows:

1 Ey V- N

o = O O

0 0
0 1
0 1
1 1

O = =
—_— O =

1
1
0
1

S = O =

10 101 0 0111
01 0101 101 1
oo lito1ol Y7110 1
00 0101 1110

o

Let {w;},<;<4 be the stated Z-basis of M, s, and define a Z-linear map ¢: Mys — r(Z4) by

ewy) = Uz, @) =Uy, @ws3)=Us, @(wy)=1.

Then, it is easy to check that ¢ is an isomorphism of (S 4)-modules, so M, s is equivalent to #(Z4) as
based modules by Definition 2.4 (i). In other words, the based module M, 5 can be categorified by the
module category Rep(Z,) over Rep(S4). m|

Remark 4.2. By the same argument as in Remark 4.1, V,, and V,, can be required to satisfy the
Jfollowing restriction rules instead:

Res2! (V,,) = 1+ Ui+ Us, Resy!(Vy,)=Ui+ Uy + Us.
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Therefore, we get another action of (S 4) on r(Z4) such that r(Z,) is an irreducible based module over
(S 4) equivalent to the based module M4; according to Table 4. In other words, the based module M, 7
can also be categorified by the module category Rep(Z4) over Rep(S 4).

Also, one can similarly check that the module category Rep(Z,) over Rep(S 4) categorifies the based
modules M, , and M, 3, while Rep(Z3) over Rep(S 4) categorifies the based module M ;.

(iii)) Now we consider Rep(K}) as a module category over Rep(S 4).

Theorem 4.5. r(K;) = Gr(Rep(K,)) is an irreducible based module over r(S 4) equivalent to the based
module M7 in Table 4.

Proof. We consider K; as the subgroup of S, generated by (12) and (34), and it has four
non-isomorphic 1-dimensional irreducible representations Yy = 1 and Y, Y5, Y3 such that

xn((12)=-1, xn(B4H) =1, xn(12) =1,
Xn((B4) = -1 xrn((12)) = -1, xr((34) = -1

On the other hand, by the character table of S, (Table 1), we have

Xu((12)) = xy(34) = -1, xy((12)(34)) = 1;
X ((12)) = x,, (34) = 0, x,,((12)(34)) = 2;
X ((12)) = xp, (B4) = 1, x,((12)(34)) = 15
Xp3((12)) = x,(34) = =1, x,,((12)(34)) = —1.

So, we have the following restriction rules:

Resy! (1) =1, Resy! (V,)=Ys, Resy(V,)=1+1;,
Resy! (Vo) =1+ Y1+ Yy, Respt (V) =Y+ Y2 +7s

Then we get the representation matrices of basis elements of (S 4) acting on r(Ky) as follows:

000 1 100 1

0010 0110

e B Vil 1 ool Y»"lo 1 1 o

1000 100 1
1110 01 11
1101 101 1
Vel o1l Y2l 0 1)
01 1 1 1 110

Let {w;},<i<4 be the stated Z-basis of M, listed in Table 4. Then
wi Y, wae Y, w1, wye Y,

defines an equivalence of Z,-modules between M, ; and r(K,). In other words, the irreducible based
module M, ; can be categorified by the module category Rep(K4) over Rep(S 4). O
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Remark 4.3. In a manner analogous to the argument in Remark 4.1, it follows that the irreducible
based module M, s can also be categorified by the module category Rep(Ky) over Rep(S 4).

(iv) We consider Rep(A,4) as a module category over Rep(S 4).

Theorem 4.6. r(A;) = Gr(Rep(Ay)) is an irreducible based module over r(S 4) equivalent to the based
module My in Table 4.

Proof. We know that A4 has three non-isomorphic 1-dimensional irreducible representations and one 3-
dimensional irreducible representation, denoted by Ny, Ny, N,, and N3, respectively, where Ny = 1
represents the trivial representation, and

xmn((123) = 0, xn, ((12)34) = 1: xn,((123) = ?, xn,((12)(34) = 1;
-1+ -3

xv;((123)) = iy, ((132)) = 0, xn,((12)(34)) = -1, w 5

On the other hand, the character table of S 4 (Table 1) tells us that

xu((123)) = 1, xy((12)34) = 1 x,,((123)) = =1, x,,((12)(34)) = 2;
Xp:((123)) =0, x,,((12)(34)) = =15 x,,,((123)) = 0, x,,,((12)(34)) = —1.

So, we have the following restriction rules:
Resy! (1) =Resy! (V,) =1, Resy(V,) =N+ N, Resy!(V,,) =Resy! (V,,) = Ns.

Hence, we get the representation matrices of basis elements of r(S4) acting on r(A4) as follows:

1 = Ey4, ng/ = Ey, Vp1 = > sz’ Vps =

000
00O
00O
I 11

N = = =

Then, r(A4) 1s an irreducible based module over r(S4) equivalent to M, listed in Table 4. In other
words, the irreducible based module M, ; can be categorified by the module category Rep(A4) over
Rep(S 4). O

(v) Next, we consider Rep(D,) as a module category over Rep(S 4).

Theorem 4.7. r(D,) = Gr(Rep(D,)) is an irreducible based module over r(S 4) equivalent to the based
module Ms, in Table 5.

Proof. The dihedral group
Dy ={(r,s|r'=5"=(rs)*=1)

has four 1-dimensional irreducible representations and one 2-dimensional irreducible representation
up to isomorphism, denoted by Wy, Wy, W,, W3, and Wy, respectively. Let W, = 1 stand for the trivial
representation, and

)(Wl(”)zl, XWI(S):_l; )(Wz(r):—l, XWZ(S):l;
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XW3(r):_1’ XW3(S):_1; XW4(r):XW4(S):XW4(rS):O-

On the other hand, we consider D, as the subgroup of S 4 by taking r = (1234) and s = (12)(34). Then
rs = (13). By the character table of S 4 (Table 1), we have

xu((1234) = =1, xy((12)34) = 1, x,((13)) = -1
Xp((1234)) = 0, ), ((12)34)) =2, x,,((13)) = 0;
Xpr((1234)) = =1, x,,((12)(34) = =1, x,,((13)) = 1
Xps((1234)) = 1, X, ((12)(34)) = =1, x,,((13)) = —L.

So, we have the following restriction rules:

Resp! (1) =1, Resy (V) =Wa Resp! (V) =1+ W,

Resy (Vi) = Wa+ Wi, Respy (V) = Wy + Wi,

Then we get the representation matrices of basis elements of r(S4) acting on r(D,) as follows:

00100 10100

00010 01010

1+ Es, V,[1 000 0], V, »|[1 010 0],

01000 01010

00001 00002
00011 01001
00101 10001
V[0 100 1|, V,»[0 00 1 1f.
10001 00101
11111 11111

Then r(Dy) is an irreducible based module over r(S4) equivalent to Ms, listed in Table 5. In other
words, the irreducible based module Ms, can be categorified by the module category Rep(D,) over
Rep(S 4). |

(vi) Finally, we consider Rep(S 4) as a module category over itself.

Theorem 4.8. The regular Z.-module r(S 4) over itself is equivalent to the irreducible based module
Msy in Table 5.

Proof. Let r(S4) be the regular Z,-module over itself with the Z-basis {1, Vs Vors Vors Vp3}, and the
action of (S 4) on it is given as follows:

1 = Es, Vlﬁ = p1

cocoo~o
cooc o~
co~—~oo
N =N =N}
o~ o oo

<

)
co—~o o
co~oco
SO = = =
—_——_ 0 oo
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00010 00001
00001 000710
V,~|0 001 1], V,~[0 00 11
101 11 01 111
01111 10111

Then, the regular Z,-module r(S 4) over itself is equivalent to M5 listed in Table 5. In other words,
the irreducible based module M5 ; over r(S 4) can be categorified by the module category Rep(S4) over
itself. O

Remark 4.4. Following the argument presented in Remark 4.1, if we exchange the notations V,,, and
V,,, with their restriction rules given in the proof of Theorems 4.7 and 4.8, we see that r(D4) and r(S 4)
are still equivalent to Ms, and Ms ), respectively.

4.2. The module categories over Rep(S 4) with nontrivial twists

Lastly, we consider the module category Rep(H, a) over Rep(S4), where H is a subgroup of S 4 with
a representing the unique nontrivial cohomological class in H*(H, C*). All non-isomorphic irreducible
projective representations of H with the multiplier @ form a Z-basis of r(H, a), whose cardinality is the
number of a-regular conjugacy classes by [38, Theorem 6.1.1].

First, we consider the twisted group algebra of K,. There is only one irreducible projective
representation with respect to @ up to isomorphism, see, e.g., [39, Appendix D.1]. Hence, r(Ky, @) is a
based module of rank 1 over r(S4) equivalent to M| ; defined in (3.8). Namely, the based module M| ;
can also be categorified by Rep(Ky, @).

Second, we consider the twisted group algebra of D,.

Theorem 4.9. r(Dy4, @) = Gr(Rep(Dy, @)) is an irreducible based module over r(S 4) equivalent to the
based module M, 5 in Table 2.

Proof. Let
Dy={(r,s|r*=s"=(rs)’ = 1).

Let o« € Z*(D4, C*) be the 2-cocycle defined by
a(r's’, ri,sj,) =( V—l)ﬁ,.

Here, i,i’ € {0,1,2,3}, j,j/ € {0,1}. As shown in [40, Section 3.7], this is a unitary 2-cocycle
representing the unique non-trivial cohomological class in H*(Dy4, C*). According to [35, Section 3],
there exist two (2-dimensional) non-isomorphic irreducible projective representations of D, with
respect to @, which are given by
7 Dy — GLy(C),
rsl A;Bj ,
where

4 = (V=1) 0 ) B:(o 1

0 (V-
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Also, for irreducible representations Wy—W, of D4 mentioned in the proof of Theorem 4.7, we have
Wom =W, @m=m, Wo@m=W3nm =m3_, WiQmn =m +m,.

Next, using the previous restriction rule of r(S4) on r(Dy4), we get the representation matrices of
basis elements of 7(S4) acting on r(Dy, @) as follows:

01 1 1 1 2 2 1
1 > E,, V,p|—>(1 0), Vp1|—>(1 1), Vp2|—>(2 1), Vp3|—>(1 2).

Then, r(Dy, @) is an irreducible based module over r(S 4) equivalent to M, 3 listed in Table 2. In other
words, the irreducible based module M, ; can be categorified by the module category Rep(D., @) over
Rep(S 4). |

Remark 4.5. As discussed in Remark 4.1, it follows that the irreducible based module M,, can also
be categorified by the module category Rep(Dy, @) over Rep(S 4).

Next, we consider the twisted group algebras of A4 and S4. By [38, Theorem 6.1.1], A; has
three (2-dimensional) non-isomorphic irreducible projective representations, denoted as V,,,V,,, and
V,,, respectively. Similarly, S4 has two (2-dimensional) non-isomorphic irreducible projective
representations Vg, Ve,, and one (4-dimensional) irreducible projective representation V. We give
the character table for projective representations of A4 and S, in Tables 6 and 7, respectively, where
primes are used to differentiate between the two classes splitting from a single conjugacy class of A4
in its double cover A4, and the same applies to S4; subscripts distinguish between the two classes
splitting from the conjugacy classes (31)" and (31)” in the double cover S, of S, respectively. For
more details, see [41, Section 4].

In Table 6, we denote

w = V113 1 +2\/__3.

Table 6. The character table for irreducible projective representations of Ay.

(% a’ 2 31, 31 (1), (1),
Xvi 2 -2 0 1 -1 1 -1
Xy 2 -2 0 w —w w? -w?
Xs 2 -2 0 w? —w? w -w

Table 7. The character table for irreducible projective representations of S 4.

(1% (1" Q1) 2% (€1 G’ 0 O
X 2 -2 0 0 1 -1 V2 -V2
Xer 2 -2 0 0 1 -1 -2 V2
Xe, 4 -4 0 0 1 1 0 0

Then we have the following theorems.

Theorem 4.10. r(A4, @) = Gr(Rep(Ay, @)) is an irreducible based module over r(S 4) equivalent to the
based module M5 in Table 3.
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Proof. For the irreducible representations Ny, N1, N,, and N; of A; mentioned in the proof of
Theorem 4.6, we obtain the following tensor product rule in r*(A4) by computing the values of
products of characters:

N®V,, =V, N ®V7j = V7j+l’ N®V,, =V,; MoV, =V,
NeVv,=V,, NeV,=V,, NeV,=V, +V, +V,,

where i = 1,2,3, j = 1,2. Next, by combining this with the previous restriction rule of r(S4) on r(Ay),

we obtain
011 1 11
LVy—=E;, V,=|[1 0 1|, V,,V,,—>|1 1 1}.

1 10 I 11

Then r(A4, @) 1s an irreducible based module over r(S 4) equivalent to M3 ; listed in Table 3. In other
words, the irreducible based module M3 ; can be categorified by Rep(A4, @). |

Theorem 4.11. r(S4, @) = Gr(Rep(S 4, @)) is an irreducible based module over r(S 4) equivalent to the
based module M5 3 in Table 3.

Proof. Let a be a nontrivial 2-cocycle in Z2(S4,C*) (see e.g., [42, Section 3.2.4]). By checking
products of characters, we get the following tensor product rule in 7*(S 4):

l® Vfi = Vfi; Vl// ® ng = st—j’ Vl// ® sz = V§3; V,Dl ® ij = Vs“s’ Vpl ® V_& = Vfl + sz + V§3;
sz ® ij = V§3—_/ + st’ sz ® V§3 = Vm ® st = Vfl + sz + 2ch3; Vps ® V-f_/ = V-f_j + st;

where i = 1,2,3, j = 1,2. Thus, we get

010 0 01 011 1 01
l—>E;, V,y—|1 0O, V,,=>[0 0 1], V,=>|1 0 1f, V, =0 1 1}.
0 01 1 11 1 1 2 1 1 2

Then r(S4, @) is an irreducible based module over r(S 4) equivalent to Mj 3 listed in Table 3. In other
words, the irreducible based module M; 3 over r(S 4) can be categorified by Rep(S4, @). O

In summary, we have the following classification theorem.

Theorem 4.12. The inequivalent irreducible based modules over r(S 4) are

M, {M2,i}i:1,2,3’ {M?uj} {M4,S}1§S§7 and {M5J}t:1,2’

=123’

among which

M, {Mz,i}izz,y {Mlj} {M4,s}s:1,5,7 and {MSJ}t:l,Z

j=123’

can be categorified by module categories over Rep(S 4), see Table 8.
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Table 8. Inequivalent irreducible based modules over 7(S 4).

Categorification

Vir

Viou
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5. Conclusions

The analysis in this paper shows that the classification of the irreducible based modules of rank up
to 5 over the complex representation ring r(S4). We also showed that any Z.-modules over the
representation ring r(G) categorified by a module category over the representation category Rep(G)
must be a based module. At the end, we present the categorification of based modules over (S 4) by
module categories over the complex representation category Rep(S4) of S4, using projective
representations of specific subgroups of S4. We expect that the studies developed here will be helpful
in investigations of the structures of module categories over fusion categories. Our future study will
focus on the existence of any irreducible based module of rank > 6 over r(S4) and classifying
irreducible Z,-modules over r(S4), especially for high-rank cases. Also, some other small finite
groups may be interesting to consider, e.g., the dihedral group Ds.
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