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Abstract: The complex representation rings of finite groups are the fundamental class of fusion rings,
categorified by the corresponding fusion categories of complex representations. The category of Z+-
modules of finite rank over such a representation ring is also semisimple. In this paper, we classify
the irreducible based modules of rank up to 5 over the complex representation ring r(S 4) of the
symmetric group S 4. In total, 16 inequivalent irreducible based modules were obtained. In this
process, the MATLAB program was used in order to obtain some representation matrices. Based
on such a classification result, we further discuss the categorification of based modules over r(S 4)
by module categories over the complex representation category Rep(S 4) of S 4 arisen from projective
representations of certain subgroups of S 4.
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1. Introduction

Tensor categories should be thought as counterparts of rings in the world of categories [1–3], i.e.,
the categorification of groups and rings [4–6]. They are ubiquitous in noncommutative algebra and
representation theory. Tensor categories were introduced by Bénabou [7] in 1963 and Lane [8] as
“categories with multiplication”, and its related theories are now widely used in many fields of
mathematics, including algebraic geometry [9], algebraic topology [10], number theory [11], operator
algebraic theory [12], etc. The theory of tensor categories is also seen as a development following
from that of Hopf algebras and their representation theory [13, 14]. As an important invariant in the
theory of tensor categories, the concept of a Z+-ring can be traced back to Lusztig’s work [15] in
1987. Later, in [16, 17], the notion of a Z+-module over a Z+-ring was introduced. Module categories
over multitensor categories were first considered in [4, 18], and then the notion of an indecomposable
module category was introduced in [17]. As a categorification of irreducible Z+-modules, it is
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interesting to classify indecomposable exact module categories over a given tensor category. In this
process, it is often necessary to first classify all irreducible Z+-modules over the Grothendieck ring of
a given tensor category.

Typical examples of Z+-rings are the representation rings of Hopf algebras [19–24]. Another
example is the Grothendieck rings of tensor categories [25–28]. It is natural to consider the
classification of all irreducible Z+-modules over them. For example, Etingof and Khovanov classified
irreducible Z+-modules over the group ring ZG, and showed that indecomposable Z+-modules over
the representation ring of SU(2), under certain conditions, correspond to affine and infinite Dynkin
diagrams [16]. Also, there is a lot of related research in the context of near-group fusion categories.
For instance, Tambara and Yamagami classified semisimple tensor categories with fusion rules of
self-duality for finite abelian groups. Evans, Gannon, and Izumi have contributed to the classification
of the near-group C∗-categories [29, 30]. Yuan et al. [31] studied irreducible Z+-modules of the
near-group fusion ring K (Z3, 3) and so on.

In this paper, we explore the problem of classifying irreducible based modules of rank up to 5
over the complex representation ring r(S 4), and then discuss their categorification. Furthermore, we
overcome the technical difficulty of solving a series of non-negative integer equations using MATLAB.
In contrast with the representation ring of S 3, r(S n) is no longer a near-group fusion ring when n > 3,
and the classification of irreducible Z+-modules over general r(S n) seems to be a hopeless task. Hence,
our paper attempts to classify irreducible based modules for the non-near-group fusion ring r(S 4). In
fact, the fusion rule of r(S n) is already a highly nontrivial open problem in combinatorics, namely
counting the multiplicities of irreducible components of the tensor product of any two irreducible
complex representations of S n (so called the Kronecker coefficients).

The paper is organized as follows. In Section 2, we recall some basic definitions and propositions.
In Section 3, we discuss the irreducible based modules of rank up to 5 over r(S 4) and give the
classification of all these based modules (Propositions 3.1–3.5). In Section 4, we first show that any
Z+-module over the representation ring r(G) of a finite group G categorified by a module category
over the representation category Rep(G) should be a based module (Theorem 4.2), and then determine
which irreducible based modules over r(S 4) can be categorified (Theorem 4.12).

2. Preliminaries

Throughout this paper, all rings are assumed to be associative with unit 1. Let Z+ denote the set
of nonnegative integers. First, we recall the definitions of Z+-rings and Z+-modules. For more details
about these concepts, readers can refer to [17, 32].

2.1. Z+-rings and Z+-modules

In this section, we first recall some definitions, and then we exhibit a class of identities for
transposed Poisson n-Lie algebras.

Definition 2.1. Let A be a ring which is free as a Z-module:

(i) A Z+-basis of A is a basis
B = {bi}i∈I ,
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such that
bib j =

∑
k∈I

ck
i jbk,

where ck
i j ∈ Z+.

(ii) A Z+-ring is a ring with a fixed Z+-basis and with unit 1 being a non-negative linear combination
of the basis elements.

(iii) A Z+-ring is unital if the unit 1 is one of its basis elements.

Definition 2.2. Let A be a Z+-ring with basis {bi}i∈I . A Z+-module over A is an A-module M with a
fixed Z-basis {ml}l∈L such that all the structure constants ak

il, defined by the equality

biml =
∑

k

ak
ilmk

are non-negative integers.

A Z+-module has the following equivalent definition referring to [32, Section 3.4].

Definition 2.3. Let A be a Z+-ring with basis {bi}i∈I . A Z+-module M over A means an assignment
where each basis bi in A is in one-to-one correspondence with a non-negative integer square matrix
Mi such that M forms a representation of A:

MiM j =
∑
k∈I

ck
i jMk, ∀i, j, k ∈ I,

where the unit of A corresponds to the identity matrix. The rank of a Z+-module M is equal to the order
of the matrix Mi.

Definition 2.4. (i) Two Z+-modules M1, M2 over A with bases
{
m1

i

}
i∈L1

,
{
m2

j

}
j∈L2

are equivalent if and

only if there exists a bijection ϕ: L1 → L2 such that the induced Z-linear map ϕ̃ of abelian groups
M1, M2 defined by

ϕ̃(m1
i ) = m2

ϕ(i)

is an isomorphism of A-modules. In other words, for a ∈ A, let aM1 and aM2 be the matrices with respect
to the bases

{
m1

i

}
i∈L1

and
{
m2

j

}
j∈L2

, respectively. Then, two Z+-modules M1, M2 of rank n are equivalent
if and only if there exists an n × n permutation matrix P such that

aM2 = PaM1 P−1, ∀a ∈ A.

(ii) The direct sum of two Z+-modules M1, M2 over A is the module M1 ⊕ M2 over A whose basis is
the union of the bases of M1 and M2.

(iii) A Z+-module M over A is indecomposable if it is not equivalent to a nontrivial direct sum of
Z+-modules.

(iv) A Z+-submodule of a Z+-module M over A with basis {ml}l∈L is a subset J ⊂ L such that the
abelian subgroup of M generated by

{
m j

}
j∈J

is an A-submodule.

(v) A Z+-module M over A is irreducible if any Z+-submodule of M is 0 or M. In other words, the
Z-span of any proper subset of the basis of M is not an A-submodule.
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2.2. Based rings and based modules

Let A be a Z+-ring with basis {bi}i∈I , and let I0 be the set of i ∈ I such that bi occurs in the
decomposition of 1. Let τ: A→ Z denote the group homomorphism defined by

τ(bi) =

1, if i ∈ I0,

0, if i < I0.

Definition 2.5. A Z+-ring with basis {bi}i∈I is called a based ring if there exists an involution i 7→ i∗ of
I such that the induced map

a =
∑
i∈I

aibi 7→ a∗ =
∑
i∈I

aibi∗ , ai ∈ Z,

is an anti-involution of the ring A, and

τ(bib j) =

1, if i = j∗,

0, if i , j∗.

A fusion ring is a unital based ring of finite rank.

Definition 2.6. A based module over a based ring A with basis {bi}i∈I is a Z+-module M with basis
{ml}l∈L over A such that

ak
il = al

i∗k,

where ak
il are defined as in Definition 2.2.

Let A be a unital Z+-ring of finite rank with basis {bi}i∈I , and let M be a Z+-module over A with
Z-basis {ml}l∈L. Take

b =
∑
i∈I

bi.

For any fixed ml0 , the Z+-submodule of M generated by ml0 is the Z-span of {mk}k∈Y , where the set Y
consists of k ∈ L such that mk is a summand of bml0 . Also, we need the following facts.

Proposition 2.1. [32, Proposition 3.4.6] Let A be a based ring of finite rank over Z. Then there exist
only finitely many irreducible Z+-modules over A.

Proposition 2.2. [17, Lemma 2.1] Let M be a based module over a based ring A. If M is decomposable
as a Z+-module over A, then M is irreducible as a Z+-module over A.

As a result, any Z+-module of finite rank over a fusion ring is completely reducible, and then only
irreducible Z+-modules need to be classified.

In general, the rank of an irreducible Z+-module over a fusion ring A may be larger than the rank
of A; e.g., A = r(D5) for the dihedral group D5 ([33, Remark 1]). In this paper, we explore which
irreducible based modules over r(S 4) can be categorified by indecomposable exact module categories
over the representation category Rep(S 4). Since all these module categories are of rank not greater
than 5, we only deal with based modules of rank up to 5 correspondingly.
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3. Irreducible based modules over r(S 4)

In this section, we will classify the irreducible based modules over the complex representation ring
r(S 4) of S 4 up to equivalence. r(S 4) is a commutative fusion ring having a Z+-basis

{
1,Vψ,Vρ1 ,Vρ2 ,Vρ3

}
with the fusion rule.

V2
ψ = 1, VψVρ1 = Vρ1 , VψVρ2 = Vρ3 , V2

ρ1
= 1 + Vψ + Vρ1 ,

Vρ1Vρ2 = Vρ2 + Vρ3 , V2
ρ2
= 1 + Vρ1 + Vρ2 + Vρ3 ,

(3.1)

where 1, Vψ, and Vρ1 denote the trivial representation, sign representation, and 2-dimensional
irreducible representation, respectively, while Vρ2 stands for the 3-dimensional standard
representation and Vρ3 denotes its conjugate representation. Then we have the following Table 1.

Table 1. The complex character table of S 4.
(1) (12) (123) (1234) (12)(34)

χ1 1 1 1 1 1
χψ 1 −1 1 −1 1
χρ1 2 0 −1 0 2
χρ2 3 1 0 −1 −1
χρ3 3 −1 0 1 −1

Let M be a based module of r(S 4) with the basis {ml}l∈L. Let T, Q, U, and W be the matrices
representing the action of Vψ, Vρ1 , Vρ2 , and Vρ3 on M respectively. They are all symmetric matrices
with nonnegative integer entries by Definition 2.6. Let E be the identity matrix. By the fusion rule of
r(S 4), we have

T 2 = E, (3.2)
T Q = QT = Q, (3.3)
TU = UT = W, (3.4)
Q2 = E + T + Q, (3.5)

QU = U + TU, (3.6)
U2 = E + Q + U + TU. (3.7)

In particular, since T 2 = E and T has nonnegative integer entries, we know that T is a symmetric
permutation matrix.

Convention 3.1. Let Pn be the group of n × n permutation matrices. Since there is naturally a group
isomorphism between S n and Pn, we will use the cycle notation of permutations to represent
permutation matrices.

3.1. Irreducible based modules of rank ≤ 3 over r(S 4)

We define a Z+-module M1,1 of rank 1 over r(S 4) by letting

Vψ 7→ 1, Vρ1 7→ 2, Vρ2 7→ 3, Vρ3 7→ 3. (3.8)
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Proposition 3.1. Any irreducible based module of rank 1 over r(S 4) is equivalent to M1,1.

Proof. Note that any integral fusion ring A has the unique character FPdim: A → Z, which takes non-
negative values on the Z+-basis, so there exists a unique Z+-module M of rank 1 over it. Clearly, such
M is a based module. Now this argument is available for the situation A = r(S 4). □

Next, we consider irreducible based modules of rank 2, 3. According to the fusion rule of r(S 4)
given in (3.1), it is sufficient to only list the representation matrices of Vψ, Vρ1 , and Vρ2 acting on them.
For simplicity, we choose to present our result for the cases of small rank 2 and 3 directly, and then
analyze the cases of higher rank 4 and 5 with details.

Proposition 3.2. Let M be an irreducible based module of rank 2 over r(S 4). Then M is equivalent to
one of the based modules M2,i, 1 ≤ i ≤ 3, listed in Table 2.

Table 2. Inequivalent irreducible based modules of rank 2 over r(S 4).
Vψ Vρ1 Vρ2

M2,1

(
1 0
0 1

) (
2 0
0 2

) (
1 2
2 1

)
M2,2

(
0 1
1 0

) (
1 1
1 1

) (
2 1
1 2

)
M2,3

(
0 1
1 0

) (
1 1
1 1

) (
1 2
2 1

)

Proposition 3.3. Let M be an irreducible based module of rank 3 over r(S 4). Then M is equivalent to
one of the based modules M3,i, 1 ≤ i ≤ 3, listed in Table 3.

Table 3. Inequivalent irreducible based modules of rank 3 over r(S 4).
Vψ Vρ1 Vρ2

M3,1


1 0 0
0 1 0
0 0 1



0 1 1
1 0 1
1 1 0



1 1 1
1 1 1
1 1 1


M3,2


0 1 0
1 0 0
0 0 1



0 0 1
0 0 1
1 1 1



1 0 1
0 1 1
1 1 2


M3,3


0 1 0
1 0 0
0 0 1



0 0 1
0 0 1
1 1 1



0 1 1
1 0 1
1 1 2


3.2. Irreducible based modules of rank 4, 5 over r(S 4)

Proposition 3.4. Let M be an irreducible based module of rank 4 over r(S 4). Then M is equivalent to
one of the based modules M4,i, 1 ≤ i ≤ 7, listed in Table 4.
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Table 4. Inequivalent irreducible based modules of rank 4 over r(S 4).
Vψ Vρ1 Vρ2

M4,1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



0 0 1 1
0 2 0 0
1 0 0 1
1 0 1 0



0 1 0 0
1 2 1 1
0 1 0 0
0 1 0 0


M4,2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2



0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


M4,3


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



1 1 0 0
1 1 0 0
0 0 2 0
0 0 0 2



1 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0


M4,4


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



1 1 0 0
1 1 0 0
0 0 2 0
0 0 0 2



0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


M4,5


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1



0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


M4,6


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1



0 1 1 1
1 0 1 1
1 1 1 0
1 1 0 1


M4,7


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1



1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1


Proof. Before giving its detailed proof, we provide the following proof outline first.

(i) The symmetric group S 4 has 3 conjugacy classes of permutations of order ≤ 2, so there are 3
representatives for matrix T up to conjugation as follows:

T1 = E4, T2 = (12), T3 = (12)(34).

Consequently, we can take T = Tr for some r = 1, 2, 3 as the representation matrix of Vψ for the
based module M up to equivalence.

(ii) Use MATLAB to search all solutions of the representation matrices Q and U in the group of
nonnegative integer matrix Eqs (3.3)–(3.7) by constraint satisfaction.

(iii) Distinguish all conjugacy classes of tuples (T,Q,U) without simultaneous block decomposition.
They correspond to the equivalence classes of irreducible based modules over r(S 4).

□

Proof. Let M be a based module of rank 4 over r(S 4), with the action of r(S 4) on it given by

Vψ 7→ T, Vρ1 7→ Q = (ai j)1≤i, j≤4, Vρ2 7→ U = (bi j)1≤i, j≤4, Vρ3 7→ W = TU,
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where ai j = a ji, bi j = b ji.
The symmetric group S 4 has two conjugacy classes of permutations of order 2. One conjugacy class

of 6 permutations includes (12), and the other one of 3 permutations includes (12)(34). As previously
seen, T is the unit or an element of order 2 in P4, so we have 10 candidates for T , and each of them is
conjugate to one of the following 3 matrices:

T1 = E4, T2 = (12), T3 = (12)(34).

Hence, for the based module M determined by the pair (T,Q,U), there exists a 4 × 4 permutation
matrix P such that

T ′ = PT P−1

is one of the above Tr’s (1 ≤ r ≤ 3). Correspondingly, let

Q′ = PQP−1, U′ = PUP−1.

Then we get a based module M′ determined by the pair (T ′,Q′,U′) and equivalent to M as based
modules by Definition 2.4 (i). So, we have reduced the proof to the situation when T = Tr.

Case 1. T = T1 = E4.

Since Q satisfies Eq (3.5), we obtain the following system of integer equations:

a2
11 + a2

12 + a2
13 + a2

14 = 2 + a11,

a11a12 + a12a22 + a13a23 + a14a24 = a12,

a11a13 + a12a23 + a13a33 + a14a34 = a13,

a11a14 + a12a24 + a13a34 + a14a44 = a14,

a2
12 + a2

22 + a2
23 + a2

24 = 2 + a22,

a12a13 + a22a23 + a23a33 + a24a34 = a23,

a12a14 + a22a24 + a23a34 + a24a44 = a24,

a2
13 + a2

23 + a2
33 + a2

34 = 2 + a33,

a13a14 + a23a24 + a33a34 + a34a44 = a34,

a2
14 + a2

24 + a2
34 + a2

44 = 2 + a44.

We use MATLAB to figure out all the solutions of Q as follows:

Q1 =


0 0 1 1
0 2 0 0
1 0 0 1
1 0 1 0

 , Q2 =


0 1 0 1
1 0 0 1
0 0 2 0
1 1 0 0

 , Q3 =


0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 2

 ,

Q4 =


2 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

 , Q5 =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 .
Next, we calculate U after taking Q as one Qk (1 ≤ k ≤ 5).

Case 1.1. Q = Q1.
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Since U satisfies Eq (3.6), we get

b12 = b23 = b24,

b11 = b13 = b14 = b33 = b34 = b44.

Then, by Eq (3.7), we have 
3b2

11 + b2
12 = 2b11 + 1,

3b11b12 + b12b22 = 2b12,

3b2
12 + b2

22 = 2b22 + 3.
The solutions of U given by MATLAB are as follows:

U1 =


0 1 0 0
1 2 1 1
0 1 0 0
0 1 0 0

 , U2 =


1 0 1 1
0 3 0 0
1 0 1 1
1 0 1 1

 .
It is easy to check that the based module determined by (T1,Q1,U1) is an irreducible based module
denoted as M4,1, while the based module determined by (T1,Q1,U2) is reducible.

Note that there exists a permutation matrix P = (14)(23) such that

PQ1P−1 = Q2.

Let
U′1 = PU1P−1.

There is an irreducible based module N′ determined by the pair
(
T1,Q2,U′1

)
and equivalent to M4,1 by

Definition 2.4 (i). Conversely, any irreducible based module with representation matrices T1 and Q2

is equivalent to M4,1. The same analysis tells us that irreducible based modules with representation
matrices T1 and Q3 (or Q4) are also equivalent to M4,1.

Case 1.2. Q = Q5.

Since U satisfies Eqs (3.6) and (3.7), we get a system of integer equations as follows:

b2
11 + b2

12 + b2
13 + b2

14 = 2b11 + 3,
b11b12 + b12b22 + b13b23 + b14b24 = 2b12,

b11b13 + b12b23 + b13b33 + b14b34 = 2b13,

b11b14 + b12b24 + b13b34 + b14b44 = 2b14,

b2
12 + b2

22 + b2
23 + b2

24 = 2b22 + 3,
b12b13 + b22b23 + b23b33 + b24b34 = 2b23,

b12b14 + b22b24 + b23b34 + b24b44 = 2b24,

b2
13 + b2

23 + b2
33 + b2

34 = 2b33 + 3,
b13b14 + b23b24 + b33b34 + b34b44 = 2b34,

b2
14 + b2

24 + b2
34 + b2

44 = 2b44 + 3.

Thus, the solutions of U by MATLAB are as follows:

U1 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , U2 =


1 0 0 2
0 1 2 0
0 2 1 0
2 0 0 1

 , U3 =


1 0 2 0
0 1 0 2
2 0 1 0
0 2 0 1

 , U4 =


1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1

 ,
AIMS Mathematics Volume 9, Issue 7, 19859–19887.
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U5 =


1 0 2 0
0 3 0 0
2 0 1 0
0 0 0 3

 , U6 =


1 0 0 2
0 3 0 0
0 0 3 0
2 0 0 1

 , U7 =


1 2 0 0
2 1 0 0
0 0 3 0
0 0 0 3

 , U8 =


3 0 0 0
0 3 0 0
0 0 1 2
0 0 2 1

 ,

U9 =


3 0 0 0
0 1 2 0
0 2 1 0
0 0 0 3

 , U10 =


3 0 0 0
0 1 0 2
0 0 3 0
0 2 0 1

 , U11 =


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

 .
Since T1 and Q5 are diagonal and the solutions Ut (2 ≤ t ≤ 11) are block diagonal with at least two
blocks, only the based module determined by (T1,Q5,U1) is irreducible, denoted as M4,2.

Case 2. T = T2 = (12).

Since Q satisfies Eq (3.3), we get

Q =


a11 a11 a13 a14

a11 a11 a13 a14

a13 a13 a33 a34

a14 a14 a34 a44

 .
Since Q also satisfies Eq (3.5), we have the following system of integer equations:

2a2
11 + a2

13 + a2
14 = a11 + 1,

2a11a13 + a13a33 + a14a34 = a13,

2a11a14 + a13a34 + a14a44 = a14,

2a2
13 + a2

33 + a2
34 = a33 + 2,

2a13a14 + a33a34 + a34a44 = a34,

2a2
14 + a2

34 + a2
44 = a44 + 2.

Hence, the solutions of Q by MATLAB are as follows:

Q1 =


0 0 0 1
0 0 0 1
0 0 2 0
1 1 0 1

 , Q2 =


0 0 1 0
0 0 1 0
1 1 1 0
0 0 0 2

 , Q3 =


1 1 0 0
1 1 0 0
0 0 2 0
0 0 0 2

 .
Since U satisfies Eq (3.4), we get

U =


b11 b12 b13 b14

b12 b11 b13 b14

b13 b13 b33 b34

b14 b14 b34 b44

 .
Next, we calculate U after taking Q as one Qk (1 ≤ k ≤ 3).

Case 2.1. Q = Q1.
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Since U satisfies Eqs (3.6) and (3.7), the solutions of U given by MATLAB are as follows:

U1 =


0 1 0 1
1 0 0 1
0 0 3 0
1 1 0 2

 , U2 =


1 0 0 1
0 1 0 1
0 0 3 0
1 1 0 2

 .
Since T2, Q1 and all the solutions Ut for t = 1, 2 are block diagonal with at least two blocks, the based
modules determined by each pair (T2,Q1,Ut) are reducible.

Note that there exists a permutation matrix P = (12)(34) such that

PQ1P−1 = Q2.

Let
U′t = PUtP−1.

Then each based module Nt determined by the pair
(
T2,Q2,U′t

)
is reducible. Namely, any based module

with representation matrices T2 and Q2 is reducible.

Case 2.2. Q = Q3.

Since U satisfies Eqs (3.6) and (3.7), we have

U1 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , U2 =


1 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0

 , U3 =


1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1

 ,

U4 =


1 2 0 0
2 1 0 0
0 0 3 0
0 0 0 3

 , U5 =


2 1 0 0
1 2 0 0
0 0 1 2
0 0 2 1

 , U6 =


2 1 0 0
1 2 0 0
0 0 3 0
0 0 0 3

 .
Since T2, Q3 and the solutions Us (3 ≤ s ≤ 6) are block diagonal with at least two blocks, only the
based module determined by (T2,Q3,U1) and (T2,Q3,U2) are irreducible, denoted as M4,3 and M4,4,
respectively. It is easy to check that M4,3 and M4,4 are inequivalent based modules.

Case 3. T = T3 = (12)(34).

Since Q satisfies Eq (3.3), we get

Q =


a11 a11 a13 a13

a11 a11 a13 a13

a13 a13 a33 a33

a13 a13 a33 a33

 .
Then, by Eq (3.5), we have the following system of integer equations:

2a2
11 + 2a2

13 = a11 + 1,
2a11a13 + 2a13a33 = a13,

2a2
13 + 2a2

33 = a33 + 1.
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Q has the following unique solution:

Q1 =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 .
Since U satisfies Eq (3.4), we get

U =


b11 b12 b13 b14

b12 b11 b14 b13

b13 b14 b33 b34

b14 b13 b34 b33

 .
Since U also satisfies Eqs (3.6) and (3.7), we obtain the solutions of U by MATLAB as follows:

U1 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , U2 =


0 1 1 1
1 0 1 1
1 1 1 0
1 1 0 1

 , U3 =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

 , U4 =


1 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0

 ,

U5 =


1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1

 , U6 =


1 2 0 0
2 1 0 0
0 0 2 1
0 0 1 2

 , U7 =


2 1 0 0
1 2 0 0
0 0 1 2
0 0 2 1

 , U8 =


2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

 .
Clearly, T3, Q1 and the solutions Us are block diagonal with at least two blocks, but the based module
determined by the pair (T3,Q1,Ut) is irreducible, denoted as M4,s, where 5 ≤ s ≤ 8, 1 ≤ t ≤ 4. Define
the Z-module isomorphism ϕ: M4,6 → M4,8 by

ϕ(v1
1) = v2

4, ϕ(v1
2) = v2

3, ϕ(v1
3) = v2

2, ϕ(v1
4) = v2

1.

It is easy to see that M4,6 is equivalent to M4,8 as based modules over r(S 4) under ϕ. Then, we can
check that

{
M4,s

}
5≤s≤7 are inequivalent irreducible based modules. □

Finally, we construct two based modules M5,i (i = 1, 2) over r(S 4) with the actions of r(S 4) on them
presented in Table 5.

Table 5. Inequivalent irreducible based modules of rank 5 over r(S 4).
Vψ Vρ1 Vρ2

M5,1


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1




0 0 0 0 1
0 0 0 0 1
0 0 1 1 0
0 0 1 1 0
1 1 0 0 1




0 0 0 1 0
0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
0 0 1 1 0


M5,2


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1




1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 2




0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
1 1 1 1 1
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Proposition 3.5. Let M be an irreducible based module of rank 5 over r(S 4). Then M is equivalent to
one of the based modules M5,i (i = 1, 2), listed in Table 5.

Proof. Let M be a based module of rank 5 over r(S 4), with the action of r(S 4) on it given by

Vψ 7→ T, Vρ1 7→ Q = (ai j)1≤i, j≤5, Vρ2 7→ U = (bi j)1≤i, j≤5, Vρ3 7→ W = TU,

where ai j = a ji, bi j = b ji.
First, by a similar argument applied in the case of rank 4, we only need to deal with one of the

following 3 cases for T :
T1 = E5, T2 = (12), T3 = (12)(34).

Case 1. T = T1 = E5.

There are 11 solutions of Q satisfying Eq (3.5), but only two conjugacy classes by permutation
matrices with their representatives given as follows:

Q1 =


0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 2 0
0 0 0 0 2


, Q2 =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2


.

Next, we calculate U after taking Q as one Qk (k = 1, 2).

Case 1.1. Q = Q1.

There are 4 solutions of U satisfying Eqs (3.6) and (3.7) as follows:

U1 =


0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
1 1 1 2 0
0 0 0 0 3


, U2 =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 3 0
1 1 1 0 2


, U3 =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 3 0
0 0 0 0 3


, U4 =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 2
0 0 0 2 1


.

Case 1.2. Q = Q2.

There are 31 solutions of U satisfying Eqs (3.6) and (3.7), but only 4 conjugacy classes by
permutation matrices and their representatives as follows:

U1 =


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
0 0 0 0 3


, U2 =


1 0 0 2 0
0 1 2 0 0
0 2 1 0 0
2 0 0 1 0
0 0 0 0 3


, U3 =


1 2 0 0 0
2 1 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3


, U4 =


3 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3


.

Each pair (T1,Qk,Ur) above determines a based module, but is not irreducible for any 1 ≤ r ≤ 4.

Case 2. T = T2 = (12).
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There are 5 solutions of Q satisfying Eq (3.5), but only 3 conjugacy classes with the following
representatives:

Q1 =


0 0 0 0 1
0 0 0 0 1
0 0 2 0 0
0 0 0 2 0
1 1 0 0 1


, Q2 =


1 1 0 0 0
1 1 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0


, Q3 =


1 1 0 0 0
1 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2


.

Next, we calculate U after choosing Q.

Case 2.1. Q = Q1.

There are 4 solutions of U satisfying Eqs (3.6) and (3.7) as follows:

U1 =


0 1 0 0 1
1 0 0 0 1
0 0 1 2 0
0 0 2 1 0
1 1 0 0 2


, U2 =


0 1 0 0 1
1 0 0 0 1
0 0 3 0 0
0 0 0 3 0
1 1 0 0 2


, U3 =


1 0 0 0 1
0 1 0 0 1
0 0 1 2 0
0 0 2 1 0
1 1 0 0 2


, U4 =


1 0 0 0 1
0 1 0 0 1
0 0 3 0 0
0 0 0 3 0
1 1 0 0 2


.

Case 2.2. Q = Q2.

There are 2 solutions of U satisfying Eqs (3.6) and (3.7) as follows:

U1 =


1 2 0 0 0
2 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1


, U2 =


2 1 0 0 0
1 2 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1


.

Case 2.3. Q = Q3.

There are 14 solutions of U satisfying Eqs (3.6) and (3.7), but only 6 conjugacy classes by
permutation matrices with their representatives given as follows:

U1 =


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
0 0 0 0 3


, U2 =


1 0 1 1 0
0 1 1 1 0
1 1 0 1 0
1 1 1 0 0
0 0 0 0 3


, U3 =


1 2 0 0 0
2 1 0 0 0
0 0 1 2 0
0 0 2 1 0
0 0 0 0 3


,

U4 =


2 1 0 0 0
1 2 0 0 0
0 0 1 2 0
0 0 2 1 0
0 0 0 0 3


, U5 =


1 2 0 0 0
2 1 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3


, U6 =


2 1 0 0 0
1 2 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3


.

Through analysis, all based modules derived from Case 2 are reducible.
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Case 3. T = T3 = (12)(34).

There are 3 solutions of Q satisfying Eq (3.5) as follows:

Q1 =


0 0 0 0 1
0 0 0 0 1
0 0 1 1 0
0 0 1 1 0
1 1 0 0 1


, Q2 =


1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 2


, Q3 =


1 1 0 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 1 1 1


.

Next, we calculate U after fixing Q.

Case 3.1. Q = Q1.

There are 6 solutions of U satisfying Eqs (3.6) and (3.7) as follows:

U1 =


0 0 0 1 0
0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
0 0 1 1 0


, U2 =


0 0 1 0 0
0 0 0 1 0
1 0 1 1 1
0 1 1 1 1
0 0 1 1 0


, U3 =


0 1 0 0 1
1 0 0 0 1
0 0 1 2 0
0 0 2 1 0
1 1 0 0 2


,

U4 =


0 1 0 0 1
1 0 0 0 1
0 0 2 1 0
0 0 1 2 0
1 1 0 0 2


, U5 =


1 0 0 0 1
0 1 0 0 1
0 0 1 2 0
0 0 2 1 0
1 1 0 0 2


, U6 =


1 0 0 0 1
0 1 0 0 1
0 0 2 1 0
0 0 1 2 0
1 1 0 0 2


.

Each pair (T3,Q1,Ur) (1 ≤ r ≤ 6) above determines a based module, but only the based modules with
representation matrices U1 and U2 are irreducible. Such two irreducible based modules are denoted by
M5,1 and M′5,1, with the corresponding Z-basis

{
vk

1, v
k
2, v

k
3, v

k
4, v

k
5

}
for k = 1, 2, respectively. Define the

Z-module isomorphism ϕ: M5,1 → M′5,1 by

ϕ(v1
s) = v2

s , ϕ(v1
3) = v2

4, ϕ(v1
4) = v2

3, s = 1, 2, 5.

Then it is easy to see that M5,1 is equivalent to M′5,1 as based modules over r(S 4) under ϕ.

Case 3.2. Q = Q2.

There are 10 solutions of U satisfying Eqs (3.6) and (3.7), but only 7 conjugacy classes with their
representatives given as follows:

U1 =


0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
1 1 1 1 1


, U2 =


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
0 0 0 0 3


, U3 =


0 1 1 1 0
1 0 1 1 0
1 1 1 0 0
1 1 0 1 0
0 0 0 0 3


, U4 =


1 0 1 1 0
0 1 1 1 0
1 1 1 0 0
1 1 0 1 0
0 0 0 0 3


,
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U5 =


1 2 0 0 0
2 1 0 0 0
0 0 1 2 0
0 0 2 1 0
0 0 0 0 3


, U6 =


1 2 0 0 0
2 1 0 0 0
0 0 2 1 0
0 0 1 2 0
0 0 0 0 3


, U7 =


2 1 0 0 0
1 2 0 0 0
0 0 2 1 0
0 0 1 2 0
0 0 0 0 3


.

Each pair (T3,Q2,Ut) (2 ≤ t ≤ 7) above determines a based module, but only the based module with
representation matrix U1 is irreducible. We denote it by M5,2.

Also, the based modules obtained by taking Q = Q3 are equivalent to the based module M5,1 found
in Case 3.1. □

4. Categorified based modules by module categories over Rep(S 4)

In this section, we will apply the knowledge of module categories over the complex representation
category of a finite group to find which based modules over r(S 4) can be categorified by module
categories over the representation category Rep(S 4) of S 4. For the details about module categories
over tensor categories, see, e.g., [32, Section 7].

First, we recall the required result for the upcoming discussion. For any finite group G, the second
cohomology group H2(G,C∗) is known to be a finite abelian group called the Schur multiplier and
classifies central extensions of G. The notion of a universal central extension of a finite group was first
investigated by Schur in [34].

Let Rep(G, α) denote the semisimple abelian category of projective representations of G with the
multiplier α ∈ Z2(G,C∗). Equivalently, Rep(G, α) is the representation category of the twisted group
algebra CGα of G with multiplication

g ·α h = α(g, h)gh, g, h ∈ G.

In particular,
Rep(G, α) = Rep(G),

when taking α = 1.
Let α ∈ Z2(G,C∗) represent an element of order d in H2(G,C∗). Define

Repα(G) =
d−1⊕
j=0

Rep(G, α j).

According to the result in [35], we know that Repα(G) becomes a fusion category with the tensor
product of two projective representations in Rep(G, αi) and Rep(G, α j) respectively lying in
Rep(G, αi+ j), and the dual object in Rep(G, αi) lying in Rep(G, αd−i). Correspondingly, we have the
fusion ring

rα(G) =
d−1⊕
j=0

r(G, α j). (4.1)

Now let H be a subgroup of G and α ∈ Z2(H,C∗). The category Rep(H, α) is a module category
over Rep(G) by applying the restriction functor ResG

H: Rep(G)→ Rep(H).

AIMS Mathematics Volume 9, Issue 7, 19859–19887.



19875

Theorem 4.1. [17, Theorem 3.2] The indecomposable exact module categories over the representation
category Rep(G) are of the form Rep(H, α) and are classified by conjugacy classes of pairs (H, [α]).

Consequently, by [32, Proposition 7.7.2], we know the following:

Proposition 4.1. The Grothendieck group

r(H, α) = Gr(Rep(H, α))

is an irreducible Z+-module over r(G).

Next, we show that any Z+-module over the complex representation ring r(G) of a finite group G
categorified in this way is a based module.

Theorem 4.2. Let G be a finite group, H a subgroup of G, and α ∈ Z2(H,C∗). The Z+-module r(H, α)
over r(G) is a based module.

Proof. Let {ψi}i∈I be the Z+-basis of r(G). Take rα(H) defined in Eq (4.1) as a Z+-module over r(G)
with the Z-basis {χk}k∈J such that

ψi.χk =
∑

l

al
ikχl, al

ik ∈ Z+.

On the other hand, we write the fusion rule of the fusion ring rα(H) as follows:

χiχ j =

s∑
k=1

nk
i jχk, nk

i j ∈ Z+.

Since the number nk∗
i j is invariant under cyclic permutations of i, j, k , we have

nk
i j = n j∗

k∗i = n j
i∗k.

By the restriction rule, we interpret r(G) as a subring of rα(H) and write down

ψi =
∑

j

ri jχ j, ri j ∈ Z+.

Then
ψi.χk =

∑
j

ri jχ jχk =
∑

j, l

ri jnl
jkχl.

By comparing the coefficients, we see that

al
ik =

∑
j

ri jnl
jk =

∑
j

ri jnk
j∗l =

∑
j

ri∗ j∗nk
j∗l =

∑
j

ri∗ jnk
jl = ak

i∗l,

so rα(H) is a based module over r(G), and r(H, α) is clearly a based submodule of rα(H). Equivalently,
any Z+-module over r(G) categorified by a module category Rep(H, α) over Rep(G) must be a based
module. □
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By Theorem 4.2, we only need to focus on those inequivalent irreducible based modules Mi, j over
r(S 4) collected in Section 3, each of which is possibly categorified by a module category Rep(H, α) for
some H < S 4 and α ∈ Z2(H,C∗).

All the non-isomorphic subgroups of the symmetric group S 4 are as follows:

(i) The symmetric group S 3;

(ii) The cyclic groups Zi, 1 ≤ i ≤ 4;

(iii) The Klein 4-group K4;

(iv) The alternating group A4;

(v) The dihedral group D4;

(vi) The symmetric group S 4 itself.

Correspondingly, the Schur multipliers we consider here are given as follows (see e.g., [36]):

H2(Zn,C
∗) � H2(S 3,C

∗) � 0, n ≥ 1, H2(K4,C
∗) � H2(D4,C

∗) � H2(A4,C
∗) � H2(S 4,C

∗) � Z2.

As a result, we only need to consider the following two situations:
(1) Module category Rep(H) for any subgroup H < S 4;

(2) Module category Rep(H, α) for any subgroup H < S 4 and nontrivial twist α ∈ Z2(H,C∗).

4.1. The module categories over Rep(S 4) with trivial twists

(i) First, we consider the representation category Rep(S 3) as a module category over Rep(S 4).

Theorem 4.3. r(S 3) = Gr(Rep(S 3)) is an irreducible based module over r(S 4) = Gr(Rep(S 4))
equivalent to the based module M3,2 in Table 3.

Proof. According to the branching rule of symmetric groups (see e.g., [37, Theorem 2.8.3]), we have
the following restriction rules:

ResS 4
S 3

(1) = 1, ResS 4
S 3

(
Vψ

)
= χ, ResS 4

S 3

(
Vρ1

)
= V, ResS 4

S 3

(
Vρ2

)
= 1 + V, ResS 4

S 3

(
Vρ3

)
= χ + V,

where χ and V denote the sign representation and the standard representation in Rep(S 3), respectively.
Hence, we get the representation matrices of basis elements of r(S 4) acting on r(S 3) as follows:

1 7→ E3, Vψ 7→


0 1 0
1 0 0
0 0 1

 , Vρ1 7→


0 0 1
0 0 1
1 1 1

 , Vρ2 7→


1 0 1
0 1 1
1 1 2

 , Vρ3 7→


0 1 1
1 0 1
1 1 2

 .
We see that r(S 3) is an irreducible based module M3,2 according to Table 3. In other words, the based
module M3,2 can be categorified by the module category Rep(S 3) over Rep(S 4). □

Remark 4.1. Since the roles of the standard representation and its dual in r(S 4) are symmetric, we
can exchange the notations Vρ2 and Vρ3 for them to get the following restriction rules instead:

ResS 4
S 3

(
Vρ2

)
= χ + V, ResS 4

S 3

(
Vρ3

)
= 1 + V.
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Therefore, we get another action of r(S 4) on r(S 3) such that r(S 3) is an irreducible based module over
r(S 4) equivalent to the based module M3,3 according to Table 3. In other words, the based module M3,3

can also be categorified by the module category Rep(S 3) over Rep(S 4).

(ii) Second, we consider Rep(Z4) as a module category over Rep(S 4).

Theorem 4.4. r(Z4) = Gr(Rep(Z4)) is an irreducible based module over r(S 4) equivalent to the based
module M4,5 in Table 4.

Proof. Let
Z4 =

{
1, g, g2, g3

}
be the cyclic group of order 4, with four non-isomorphic 1-dimensional irreducible representations
denoted by Ui, i = 0, 1, 2, 3. Let U0 = 1 represent the trivial representation, and

χU1(g) =
√
−1, χU2(g) = −1, χU3(g) = −

√
−1.

On the other hand, we consider Z4 as the subgroup of S 4 generated by g = (1234). Then, by the
character table of S 4 (Table 1), we have

χψ(gi) = (−1)i, χρ1(g
i) = 1 + (−1)i,

χρ2(g
i) = (−1)i + (

√
−1)i + (−

√
−1)i,

χρ3(g
i) = 1 + (

√
−1)i + (−

√
−1)i.

So, the restriction rule of r(S 4) on r(Z4) is given as follows:

ResS 4
Z4

(1) = 1, ResS 4
Z4

(
Vψ

)
= U2, ResS 4

Z4

(
Vρ1

)
= 1 + U2,

ResS 4
Z4

(
Vρ2

)
= U1 + U2 + U3, ResS 4

Z4

(
Vρ3

)
= 1 + U1 + U3.

Then, we get the representation matrices of basis elements of r(S 4) acting on r(Z4) as follows:

1 7→ E4,Vψ 7→


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,Vρ1 7→


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 , Vρ2 7→


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ,Vρ3 7→


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 .
Let {wi}1≤i≤4 be the stated Z-basis of M4,5, and define a Z-linear map φ: M4,5 → r(Z4) by

φ(w1) = U3, φ(w2) = U1, φ(w3) = U2, φ(w4) = 1.

Then, it is easy to check that φ is an isomorphism of r(S 4)-modules, so M4,5 is equivalent to r(Z4) as
based modules by Definition 2.4 (i). In other words, the based module M4,5 can be categorified by the
module category Rep(Z4) over Rep(S 4). □

Remark 4.2. By the same argument as in Remark 4.1, Vρ2 and Vρ3 can be required to satisfy the
following restriction rules instead:

ResS 4
Z4

(
Vρ2

)
= 1 + U1 + U3, ResS 4

Z4

(
Vρ3

)
= U1 + U2 + U3.
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Therefore, we get another action of r(S 4) on r(Z4) such that r(Z4) is an irreducible based module over
r(S 4) equivalent to the based module M4,7 according to Table 4. In other words, the based module M4,7

can also be categorified by the module category Rep(Z4) over Rep(S 4).
Also, one can similarly check that the module category Rep(Z2) over Rep(S 4) categorifies the based

modules M2,2 and M2,3, while Rep(Z3) over Rep(S 4) categorifies the based module M3,1.

(iii) Now we consider Rep(K4) as a module category over Rep(S 4).

Theorem 4.5. r(K4) = Gr(Rep(K4)) is an irreducible based module over r(S 4) equivalent to the based
module M4,7 in Table 4.

Proof. We consider K4 as the subgroup of S 4 generated by (12) and (34), and it has four
non-isomorphic 1-dimensional irreducible representations Y0 = 1 and Y1,Y2,Y3 such that

χY1((12)) = −1, χY1((34)) = 1; χY2((12)) = 1,
χY2((34)) = −1; χY3((12)) = −1, χY3((34)) = −1.

On the other hand, by the character table of S 4 (Table 1), we have

χψ((12)) = χψ((34)) = −1, χψ((12)(34)) = 1;
χρ1((12)) = χρ1((34)) = 0, χρ1((12)(34)) = 2;
χρ2((12)) = χρ2((34)) = 1, χρ2((12)(34)) = −1;
χρ3((12)) = χρ3((34)) = −1, χρ3((12)(34)) = −1.

So, we have the following restriction rules:

ResS 4
K4

(1) = 1, ResS 4
K4

(
Vψ

)
= Y3, ResS 4

K4

(
Vρ1

)
= 1 + Y3,

ResS 4
K4

(
Vρ2

)
= 1 + Y1 + Y2, ResS 4

K4

(
Vρ3

)
= Y1 + Y2 + Y3.

Then we get the representation matrices of basis elements of r(S 4) acting on r(K4) as follows:

1 7→ E4, Vψ 7→


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , Vρ1 7→


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 ,

Vρ2 7→


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 , Vρ3 7→


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
Let {wi}1≤i≤4 be the stated Z-basis of M4,7 listed in Table 4. Then

w1 7→ Y2, w2 7→ Y1, w3 7→ 1, w4 7→ Y3,

defines an equivalence of Z+-modules between M4,7 and r(K4). In other words, the irreducible based
module M4,7 can be categorified by the module category Rep(K4) over Rep(S 4). □
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Remark 4.3. In a manner analogous to the argument in Remark 4.1, it follows that the irreducible
based module M4,5 can also be categorified by the module category Rep(K4) over Rep(S 4).

(iv) We consider Rep(A4) as a module category over Rep(S 4).

Theorem 4.6. r(A4) = Gr(Rep(A4)) is an irreducible based module over r(S 4) equivalent to the based
module M4,1 in Table 4.

Proof. We know that A4 has three non-isomorphic 1-dimensional irreducible representations and one 3-
dimensional irreducible representation, denoted by N0,N1,N2, and N3, respectively, where N0 = 1
represents the trivial representation, and

χN1((123)) = ω, χN1((12)(34)) = 1; χN2((123)) = ω2, χN2((12)(34)) = 1;

χN3((123)) = χN3((132)) = 0, χN3((12)(34)) = −1, ω =
−1 +

√
−3

2
.

On the other hand, the character table of S 4 (Table 1) tells us that

χψ((123)) = 1, χψ((12)(34)) = 1; χρ1((123)) = −1, χρ1((12)(34)) = 2;
χρ2((123)) = 0, χρ2((12)(34)) = −1; χρ3((123)) = 0, χρ3((12)(34)) = −1.

So, we have the following restriction rules:

ResS 4
A4

(1) = ResS 4
A4

(
Vψ

)
= 1, ResS 4

A4

(
Vρ1

)
= N1 + N2, ResS 4

A4

(
Vρ2

)
= ResS 4

A4

(
Vρ3

)
= N3.

Hence, we get the representation matrices of basis elements of r(S 4) acting on r(A4) as follows:

1 7→ E4, Vψ 7→ E4, Vρ1 7→


0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 2

 , Vρ2 ,Vρ3 7→


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 2

 .
Then, r(A4) is an irreducible based module over r(S 4) equivalent to M4,1 listed in Table 4. In other
words, the irreducible based module M4,1 can be categorified by the module category Rep(A4) over
Rep(S 4). □

(v) Next, we consider Rep(D4) as a module category over Rep(S 4).

Theorem 4.7. r(D4) = Gr(Rep(D4)) is an irreducible based module over r(S 4) equivalent to the based
module M5,2 in Table 5.

Proof. The dihedral group
D4 = ⟨r, s | r4 = s2 = (rs)2 = 1⟩

has four 1-dimensional irreducible representations and one 2-dimensional irreducible representation
up to isomorphism, denoted by W0,W1,W2,W3, and W4, respectively. Let W0 = 1 stand for the trivial
representation, and

χW1(r) = 1, χW1(s) = −1; χW2(r) = −1, χW2(s) = 1;
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χW3(r) = −1, χW3(s) = −1; χW4(r) = χW4(s) = χW4(rs) = 0.

On the other hand, we consider D4 as the subgroup of S 4 by taking r = (1234) and s = (12)(34). Then
rs = (13). By the character table of S 4 (Table 1), we have

χψ((1234)) = −1, χψ((12)(34)) = 1, χψ((13)) = −1;
χρ1((1234)) = 0, χρ1((12)(34)) = 2, χρ1((13)) = 0;
χρ2((1234)) = −1, χρ2((12)(34)) = −1, χρ2((13)) = 1;
χρ3((1234)) = 1, χρ3((12)(34)) = −1, χρ3((13)) = −1.

So, we have the following restriction rules:

ResS 4
D4

(1) = 1, ResS 4
D4

(
Vψ

)
= W2, ResS 4

D4

(
Vρ1

)
= 1 +W2,

ResS 4
D4

(
Vρ2

)
= W3 +W4, ResS 4

D4

(
Vρ3

)
= W1 +W4.

Then we get the representation matrices of basis elements of r(S 4) acting on r(D4) as follows:

1 7→ E5, Vψ 7→


0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1


, Vρ1 7→


1 0 1 0 0
0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
0 0 0 0 2


,

Vρ2 7→


0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
1 1 1 1 1


, Vρ3 7→


0 1 0 0 1
1 0 0 0 1
0 0 0 1 1
0 0 1 0 1
1 1 1 1 1


.

Then r(D4) is an irreducible based module over r(S 4) equivalent to M5,2 listed in Table 5. In other
words, the irreducible based module M5,2 can be categorified by the module category Rep(D4) over
Rep(S 4). □

(vi) Finally, we consider Rep(S 4) as a module category over itself.

Theorem 4.8. The regular Z+-module r(S 4) over itself is equivalent to the irreducible based module
M5,1 in Table 5.

Proof. Let r(S 4) be the regular Z+-module over itself with the Z-basis
{
1,Vψ,Vρ1 ,Vρ2 ,Vρ3

}
, and the

action of r(S 4) on it is given as follows:

1 7→ E5, Vψ 7→


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0


, Vρ1 7→


0 0 1 0 0
0 0 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1


,
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Vρ2 7→


0 0 0 1 0
0 0 0 0 1
0 0 0 1 1
1 0 1 1 1
0 1 1 1 1


, Vρ3 7→


0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 1 1 1 1
1 0 1 1 1


.

Then, the regular Z+-module r(S 4) over itself is equivalent to M5,1 listed in Table 5. In other words,
the irreducible based module M5,1 over r(S 4) can be categorified by the module category Rep(S 4) over
itself. □

Remark 4.4. Following the argument presented in Remark 4.1, if we exchange the notations Vρ2 and
Vρ3 with their restriction rules given in the proof of Theorems 4.7 and 4.8, we see that r(D4) and r(S 4)
are still equivalent to M5,2 and M5,1, respectively.

4.2. The module categories over Rep(S 4) with nontrivial twists

Lastly, we consider the module category Rep(H, α) over Rep(S 4), where H is a subgroup of S 4 with
α representing the unique nontrivial cohomological class in H2(H,C∗). All non-isomorphic irreducible
projective representations of H with the multiplier α form a Z-basis of r(H, α), whose cardinality is the
number of α-regular conjugacy classes by [38, Theorem 6.1.1].

First, we consider the twisted group algebra of K4. There is only one irreducible projective
representation with respect to α up to isomorphism, see, e.g., [39, Appendix D.1]. Hence, r(K4, α) is a
based module of rank 1 over r(S 4) equivalent to M1,1 defined in (3.8). Namely, the based module M1,1

can also be categorified by Rep(K4, α).

Second, we consider the twisted group algebra of D4.

Theorem 4.9. r(D4, α) = Gr(Rep(D4, α)) is an irreducible based module over r(S 4) equivalent to the
based module M2,3 in Table 2.

Proof. Let
D4 = ⟨r, s | r4 = s2 = (rs)2 = 1⟩.

Let α ∈ Z2(D4,C
∗) be the 2-cocycle defined by

α(ris j, ri′ s j′) = (
√
−1) ji′ .

Here, i, i′ ∈ {0, 1, 2, 3}, j, j′ ∈ {0, 1}. As shown in [40, Section 3.7], this is a unitary 2-cocycle
representing the unique non-trivial cohomological class in H2(D4,C

∗). According to [35, Section 3],
there exist two (2-dimensional) non-isomorphic irreducible projective representations of D4 with
respect to α, which are given by

πl : D4 → GL2(C),
ris j 7→ Ai

lB
j,

where

Al =

(
(
√
−1)l 0
0 (

√
−1)1−l

)
, B =

(
0 1
1 0

)
, l = 1, 2.

AIMS Mathematics Volume 9, Issue 7, 19859–19887.



19882

Also, for irreducible representations W0–W4 of D4 mentioned in the proof of Theorem 4.7, we have

W0 ⊗ πl = W1 ⊗ πl = πl, W2 ⊗ πl = W3 ⊗ πl = π3−l, W4 ⊗ πl = π1 + π2.

Next, using the previous restriction rule of r(S 4) on r(D4), we get the representation matrices of
basis elements of r(S 4) acting on r(D4, α) as follows:

1 7→ E2, Vψ 7→

(
0 1
1 0

)
, Vρ1 7→

(
1 1
1 1

)
, Vρ2 7→

(
1 2
2 1

)
, Vρ3 7→

(
2 1
1 2

)
.

Then, r(D4, α) is an irreducible based module over r(S 4) equivalent to M2,3 listed in Table 2. In other
words, the irreducible based module M2,3 can be categorified by the module category Rep(D4, α) over
Rep(S 4). □

Remark 4.5. As discussed in Remark 4.1, it follows that the irreducible based module M2,2 can also
be categorified by the module category Rep(D4, α) over Rep(S 4).

Next, we consider the twisted group algebras of A4 and S 4. By [38, Theorem 6.1.1], A4 has
three (2-dimensional) non-isomorphic irreducible projective representations, denoted as Vγ1 ,Vγ2 , and
Vγ3 , respectively. Similarly, S 4 has two (2-dimensional) non-isomorphic irreducible projective
representations Vξ1 ,Vξ2 , and one (4-dimensional) irreducible projective representation Vξ3 . We give
the character table for projective representations of A4 and S 4 in Tables 6 and 7, respectively, where
primes are used to differentiate between the two classes splitting from a single conjugacy class of A4

in its double cover Ã4, and the same applies to S 4; subscripts distinguish between the two classes
splitting from the conjugacy classes (31)

′

and (31)
′′

in the double cover S̃ 4 of S 4, respectively. For
more details, see [41, Section 4].

In Table 6, we denote

ω = e2π
√
−1/3 =

−1 +
√
−3

2
.

Table 6. The character table for irreducible projective representations of A4.
(14)

′

(14)
′′

(22) (31)
′

1 (31)
′′

1 (31)
′

2 (31)
′′

2
χγ1 2 −2 0 1 −1 1 −1
χγ2 2 −2 0 ω −ω ω2 −ω2

χγ3 2 −2 0 ω2 −ω2 ω −ω

Table 7. The character table for irreducible projective representations of S 4.
(14)

′

(14)
′′

(212) (22) (31)
′

(31)
′′

(4)
′

(4)
′′

χξ1 2 −2 0 0 1 −1
√

2 −
√

2
χξ2 2 −2 0 0 1 −1 −

√
2

√
2

χξ3 4 −4 0 0 −1 1 0 0

Then we have the following theorems.

Theorem 4.10. r(A4, α) = Gr(Rep(A4, α)) is an irreducible based module over r(S 4) equivalent to the
based module M3,1 in Table 3.
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Proof. For the irreducible representations N0,N1,N2, and N3 of A4 mentioned in the proof of
Theorem 4.6, we obtain the following tensor product rule in rα(A4) by computing the values of
products of characters:

N0 ⊗ Vγi = Vγi , N1 ⊗ Vγ j = Vγ j+1 , N1 ⊗ Vγ3 = Vγ1; N2 ⊗ Vγ1 = Vγ3 ,

N2 ⊗ Vγ2 = Vγ1 , N2 ⊗ Vγ3 = Vγ2; N3 ⊗ Vγi = Vγ1 + Vγ2 + Vγ3 ,

where i = 1, 2, 3, j = 1, 2. Next, by combining this with the previous restriction rule of r(S 4) on r(A4),
we obtain

1,Vψ 7→ E3, Vρ1 7→


0 1 1
1 0 1
1 1 0

 , Vρ2 ,Vρ3 7→


1 1 1
1 1 1
1 1 1

 .
Then r(A4, α) is an irreducible based module over r(S 4) equivalent to M3,1 listed in Table 3. In other
words, the irreducible based module M3,1 can be categorified by Rep(A4, α). □

Theorem 4.11. r(S 4, α) = Gr(Rep(S 4, α)) is an irreducible based module over r(S 4) equivalent to the
based module M3,3 in Table 3.

Proof. Let α be a nontrivial 2-cocycle in Z2(S 4,C
∗) (see e.g., [42, Section 3.2.4]). By checking

products of characters, we get the following tensor product rule in rα(S 4):

1 ⊗ Vξi = Vξi; Vψ ⊗ Vξ j = Vξ3− j , Vψ ⊗ Vξ3 = Vξ3; Vρ1 ⊗ Vξ j = Vξ3 , Vρ1 ⊗ Vξ3 = Vξ1 + Vξ2 + Vξ3;
Vρ2 ⊗ Vξ j = Vξ3− j + Vξ3 , Vρ2 ⊗ Vξ3 = Vρ3 ⊗ Vξ3 = Vξ1 + Vξ2 + 2Vξ3; Vρ3 ⊗ Vξ j = Vξ j + Vξ3;

where i = 1, 2, 3, j = 1, 2. Thus, we get

1 7→ E3, Vψ 7→


0 1 0
1 0 0
0 0 1

 , Vρ1 7→


0 0 1
0 0 1
1 1 1

 , Vρ2 7→


0 1 1
1 0 1
1 1 2

 , Vρ3 7→


1 0 1
0 1 1
1 1 2

 .
Then r(S 4, α) is an irreducible based module over r(S 4) equivalent to M3,3 listed in Table 3. In other
words, the irreducible based module M3,3 over r(S 4) can be categorified by Rep(S 4, α). □

In summary, we have the following classification theorem.

Theorem 4.12. The inequivalent irreducible based modules over r(S 4) are

M1,1,
{
M2,i

}
i=1,2,3,

{
M3, j

}
j=1,2,3

,
{
M4,s

}
1≤s≤7 and

{
M5,t

}
t=1,2,

among which

M1,1,
{
M2,i

}
i=2,3,

{
M3, j

}
j=1,2,3

,
{
M4,s

}
s=1,5,7 and

{
M5,t

}
t=1,2

can be categorified by module categories over Rep(S 4); see Table 8.
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Table 8. Inequivalent irreducible based modules over r(S 4).
Vψ Vρ1 Vρ2 Categorification

Rank 1 M1,1 1 2 3 Rep(Z1), Rep(K4, α)

Rank 2 M2,1

(
1 0
0 1

) (
2 0
0 2

) (
1 2
2 1

)
No

M2,2

(
0 1
1 0

) (
1 1
1 1

) (
2 1
1 2

)
Rep(Z2), Rep(D4, α)

M2,3

(
0 1
1 0

) (
1 1
1 1

) (
1 2
2 1

)
Rep(Z2), Rep(D4, α)

Rank 3 M3,1


1 0 0
0 1 0
0 0 1



0 1 1
1 0 1
1 1 0



1 1 1
1 1 1
1 1 1

 Rep(Z3), Rep(A4, α)

M3,2


0 1 0
1 0 0
0 0 1



0 0 1
0 0 1
1 1 1



1 0 1
0 1 1
1 1 2

 Rep(S 3)

M3,3


0 1 0
1 0 0
0 0 1



0 0 1
0 0 1
1 1 1



0 1 1
1 0 1
1 1 2

 Rep(S 3), Rep(S 4, α)

Rank 4 M4,1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



0 0 1 1
0 2 0 0
1 0 0 1
1 0 1 0



0 1 0 0
1 2 1 1
0 1 0 0
0 1 0 0

 Rep(A4)

M4,2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2



0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 No

M4,3


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



1 1 0 0
1 1 0 0
0 0 2 0
0 0 0 2



0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 No

M4,4


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



1 1 0 0
1 1 0 0
0 0 2 0
0 0 0 2



1 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0

 No

M4,5


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1



0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 Rep(Z4), Rep(K4)

M4,6


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1



0 1 1 1
1 0 1 1
1 1 1 0
1 1 0 1

 No

M4,7


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1



1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

 Rep(Z4), Rep(K4)

Rank 5 M5,1


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1




0 0 0 0 1
0 0 0 0 1
0 0 1 1 0
0 0 1 1 0
1 1 0 0 1




0 0 0 1 0
0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
0 0 1 1 0


Rep(S 4)

M5,2


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1




1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 2




0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
1 1 1 1 1


Rep(D4)
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5. Conclusions

The analysis in this paper shows that the classification of the irreducible based modules of rank up
to 5 over the complex representation ring r(S 4). We also showed that any Z+-modules over the
representation ring r(G) categorified by a module category over the representation category Rep(G)
must be a based module. At the end, we present the categorification of based modules over r(S 4) by
module categories over the complex representation category Rep(S 4) of S 4, using projective
representations of specific subgroups of S 4. We expect that the studies developed here will be helpful
in investigations of the structures of module categories over fusion categories. Our future study will
focus on the existence of any irreducible based module of rank ≥ 6 over r(S 4) and classifying
irreducible Z+-modules over r(S 4), especially for high-rank cases. Also, some other small finite
groups may be interesting to consider, e.g., the dihedral group D5.
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