Research article

Existence and stability analysis of solutions for periodic conformable differential systems with non-instantaneous impulses

  • Received: 16 December 2024 Revised: 18 January 2025 Accepted: 06 February 2025 Published: 27 February 2025
  • MSC : 34A37, 34C25

  • This paper focuses on analyzing the existence and stability of solutions for periodic conformable systems with non-instantaneous impulses. First, we define the notion of the conformable Cauchy matrix to present solutions and demonstrate fundamental characteristics including periodicity and exponential estimation. Moreover, the effect of the non-instantaneous impulses on the exponential stability is comprehensively analyzed. Next, by applying the constant variation method, we can derive the solution for the linear nonhomogeneous system with non-instantaneous impulses. In addition, the existence of periodic solutions for the given linear nonhomogeneous system is investigated. Further, the conditions required to guarantee the existence and uniqueness of the periodic solutions for nonlinear systems are provided.

    Citation: Yuanlin Ding. Existence and stability analysis of solutions for periodic conformable differential systems with non-instantaneous impulses[J]. AIMS Mathematics, 2025, 10(2): 4040-4066. doi: 10.3934/math.2025188

    Related Papers:

  • This paper focuses on analyzing the existence and stability of solutions for periodic conformable systems with non-instantaneous impulses. First, we define the notion of the conformable Cauchy matrix to present solutions and demonstrate fundamental characteristics including periodicity and exponential estimation. Moreover, the effect of the non-instantaneous impulses on the exponential stability is comprehensively analyzed. Next, by applying the constant variation method, we can derive the solution for the linear nonhomogeneous system with non-instantaneous impulses. In addition, the existence of periodic solutions for the given linear nonhomogeneous system is investigated. Further, the conditions required to guarantee the existence and uniqueness of the periodic solutions for nonlinear systems are provided.



    加载中


    [1] E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Porc. Amer. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/S0002-9939-2012-11613-2 doi: 10.1090/S0002-9939-2012-11613-2
    [2] M. U. Akhmet, J. Alzabut, A. Zafer, Perron's theorem for linear impulsive differential equations with distributed delay, J. Comput. Appl. Math., 193 (2006), 204–218. https://doi.org/10.1016/j.cam.2005.06.004 doi: 10.1016/j.cam.2005.06.004
    [3] S. I. Nenov, Impulsive controllability and optimization problems in population dynamics, Nonlinear Anal. Theory Meth. Appl., 36 (1999), 881–890. https://doi.org/10.1016/S0362-546X(97)00627-5 doi: 10.1016/S0362-546X(97)00627-5
    [4] J. Wang, M. Li, D. O'Regan, Lyapunov regularity and stability of linear non-instantaneous impulsive differential systems, IMA J. Appl. Math., 84 (2019), 712–747. https://doi.org/10.1093/imamat/hxz012 doi: 10.1093/imamat/hxz012
    [5] R. Agarwal, S. Shristova, D. O'Regan, Ulam type stability results for non-instantaneous impulsive differential equations with finite state dependent delay, Dyn. Syst. Appl., 28 (2018), 47–61. https://doi.org/10.12732/dsa.v28i1.3 doi: 10.12732/dsa.v28i1.3
    [6] V. D. Milman, A. D. Myshkis, On the stability of motion in the presence of impulses, Sibirskii Mate. Zhurnal, 1 (1960), 233–237.
    [7] Z. You, M. Fečkan, J. Wang, D. O'Regan, Relative controllability of impulsive multi-delay differential systems, Nonlinear Anal. Modell. Control, 27 (2022), 70–90. https://doi.org/10.15388/namc.2022.27.24623 doi: 10.15388/namc.2022.27.24623
    [8] M. Malik, A. Kumar, M. Fečkan, Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Uni. Sci., 30 (2018), 204–213. https://doi.org/10.1016/j.jksus.2016.11.005 doi: 10.1016/j.jksus.2016.11.005
    [9] J. Wang, Y. Tian, M. Fečkan, Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterr. J. Math., 14 (2017), 46. https://doi.org/10.1007/s00009-017-0867-0 doi: 10.1007/s00009-017-0867-0
    [10] T. Zhang, H. Qu, J. Zhou, Asymptotically almost periodic synchronization in fuzzy competitive neural networks with Caputo-Fabrizio operator, Fuzzy Sets Syst., 471 (2023), 108676. https://doi.org/10.1016/j.fss.2023.108676 doi: 10.1016/j.fss.2023.108676
    [11] A. Ivanov, S. Shelyag, Periodic solutions in a simple delay differential equation, Math. Comput. Appl., 29 (2024), 36. https://doi.org/10.3390/mca29030036 doi: 10.3390/mca29030036
    [12] Y. Tian, J. Wang, Y. Zhou, Almost periodic solutions for a class of non-instantaneous impulsive differential equations, Quaest. Math., 42 (2019), 885–905. https://doi.org/10.2989/16073606.2018.1499562 doi: 10.2989/16073606.2018.1499562
    [13] K. Liu, M. Fečkan, D. O'Regan, J. Wang, ($\omega$, c)-periodic solutions for time-varying non-instantaneous impulsive differential systems, Appl. Anal., 101 (2022), 5469–5489. https://doi.org/10.1080/00036811.2021.1895123 doi: 10.1080/00036811.2021.1895123
    [14] P. Yang, J. Wang, M. Fečkan, Boundedness, periodicity, and conditional stability of noninstantaneous impulsive evolution equations, Math. Meth. Appl. Sci., 43 (2020), 5905–5926. https://doi.org/10.1002/mma.6332 doi: 10.1002/mma.6332
    [15] P. Yang, J. Wang, D. O'Regan, Periodicity of non-homogeneous trajectories for non-instantaneous impulsive heat equations, Elect. J. Differ. Equ., 2020 (2020), 132. https://doi.org/10.58997/ejde.2020.18 doi: 10.58997/ejde.2020.18
    [16] K. Liu, J. Wang, D. O'Regan, M. Fečkan, A new class of ($\omega$, c)-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 155. https://doi.org/10.1007/s00009-020-01574-8 doi: 10.1007/s00009-020-01574-8
    [17] E. Alvarez, A. Gómez, M. Pinto, ($\omega$, c)-periodic functions and mild solutions to abstract fractional integro-differential equations, Elect. J. Qual. Theory Differ. Equ., 16 (2018), 1–8.
    [18] T. Zhang, Y. Li, Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowledge-Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675
    [19] M. Osman, M. Marwan, S. O. Shah, L. Loudahi, M. Samar, E. Bittaye, et al., Local fuzzy fractional partial differential equations in the realm of fractal calculus with local fractional derivatives, Fractal Fract., 7 (2023), 851. https://doi.org/10.3390/fractalfract7120851 doi: 10.3390/fractalfract7120851
    [20] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [21] M. Abul-Ez, M. Zayed, A. Youssef, M. De Sen, On conformable fractional Legendre polynomials and their convergence properties with applications, Alex. Eng. J., 59 (2020), 5231–5245. https://doi.org/10.1016/j.aej.2020.09.052 doi: 10.1016/j.aej.2020.09.052
    [22] S. Mehmood, F. Zafar, N. Yasmin, Hermite-Hadamard-Fejer inequalities for generalized conformable fractional integrals, Math. Meth. Appl. Sci., 44 (2020), 3746–3758. https://doi.org/10.1002/mma.6978 doi: 10.1002/mma.6978
    [23] M. Ayata, O. Ozkan, A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation, AIMS Math., 5 (2020), 7402–7412. https://doi.org/10.3934/math.2020474 doi: 10.3934/math.2020474
    [24] Y. Ding, D. O'Regan, J. Wang, Stability analysis for conformable non-instantaneous impulsive differential equations, Bull. Iran. Math. Soc., 48 (2022), 1435–1459. https://doi.org/10.1007/s41980-021-00595-7 doi: 10.1007/s41980-021-00595-7
    [25] W. Qiu, J. Wang, D. O'Regan, Existence and Ulam stability of solutions for conformable impulsive differential equations, Bull. Iran. Math. Soc., 46 (2020), 1613–1637. https://doi.org/10.1007/s41980-019-00347-8 doi: 10.1007/s41980-019-00347-8
    [26] J. Rosales-García, J. A. Andrade-Lucio, O. Shulika, Conformable derivative applied to experimental Newton's law of cooling, Rev. Mex. Fis., 66 (2020), 224–227. https://doi.org/10.31349/revmexfis.66.224 doi: 10.31349/revmexfis.66.224
    [27] A. Nazir, N. Ahmed, U. Khan, S. T. Mohyud-Din, K. S. Nisar, I. Khan, An advanced version of a conformable mathematical model of Ebola virus disease in Africa, Alex. Eng. J., 59 (2020), 3261–3268. https://doi.org/10.1016/j.aej.2020.08.050 doi: 10.1016/j.aej.2020.08.050
    [28] F. Usta, M. Z. Sarıkaya, The analytical solution of Van der Pol and Lienard differential equations within conformable fractional operator by retarded integral inequalities, Demonst. Math., 52 (2019), 204–212. https://doi.org/10.1515/dema-2019-0017 doi: 10.1515/dema-2019-0017
    [29] A. G. Talafha, S. M. Alqaraleh, M. Al-Smadi, S. Hadid, S. Momani, Analytic solutions for a modified fractional three wave interaction equations with conformable derivative by unified method, Alex. Eng. J., 59 (2020), 3731–3739. https://doi.org/10.1016/j.aej.2020.06.027 doi: 10.1016/j.aej.2020.06.027
    [30] M. Bohner, V. F. Hatipoǧlu, Dynamic cobweb models with conformable fractional derivatives, Nonlinear Anal. Hybrid Syst., 32 (2019), 157–167. https://doi.org/10.1016/j.nahs.2018.09.004 doi: 10.1016/j.nahs.2018.09.004
    [31] M. Li, J. Wang, D. O'Regan, Existence and Ulam's stability for conformable fractional differential equations with constant coefficients, Bull. Malays. Math. Sci. Soc., 42 (2019), 1791–1812. https://doi.org/10.1007/s40840-017-0576-7 doi: 10.1007/s40840-017-0576-7
    [32] M. Z. Sarıkaya, F. Usta, On comparison theorems for conformable fractional differential equations, Int. J. Anal. Appl., 12 (2016), 207–214. https://doi.org/10.28924/2291-8639 doi: 10.28924/2291-8639
    [33] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singapore: World Scientific, 1995.
    [34] D. Bainov, P. Simeonov, Integral inequalities and applications, Holland: Kluwer Academic Publishers, 1992.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(84) PDF downloads(16) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog