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Abstract: This paper focuses on analyzing the existence and stability of solutions for periodic
conformable systems with non-instantaneous impulses. First, we define the notion of the conformable
Cauchy matrix to present solutions and demonstrate fundamental characteristics including periodicity
and exponential estimation. Moreover, the effect of the non-instantaneous impulses on the exponential
stability is comprehensively analyzed. Next, by applying the constant variation method, we can derive
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1. Introduction

In the natural sciences and human social activities, impulsive and periodic phenomena are both
widespread and of profound significance. Impulse systems, a prevalent mathematical model, are used
to depict sudden change phenomena in practical problems across various fields such as economics,
population dynamics systems, physics, machinery, and biotechnology. Not only can they fully consider
the impact of perturbation or disturbance on the system state, but they can also accurately reflect
the characteristics of the system itself. With the deepening of research, researchers have conducted
extensive studies on the impulsive effect, such as [1-9].

Periodic theory is an attractive subject in the qualitative theory of differential equations.
Applications in fields such as physics, mathematical biology, control theory, and other technical


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025188

4041

sciences are of great significance. There are many papers concerning the periodic systems, and they
have yielded a variety of valuable outcomes, such as [10, 11]. Further, in biomathematics, periodic
phenomena and impulsive phenomena often occur simultaneously within one system. Hence, many
scholars focus on the periodic differential systems with impulsive effects, such as [12—-17]. As an
extension and expansion of integer order calculus, a large number of scholars have conducted research
on different types of derivatives and obtained many excellent results, such as [18, 19]. Subsequently,
following the introduction of the concept of conformable derivatives [20], many results have been
published about conformable derivatives, such as [21-32]. Previous research has focused on the
existence, uniqueness, and stability of solutions to non-instantaneous impulsive differential equations,
as well as the existence and asymptotic stability of periodic solutions. However, the relationship
between the solutions and the periodic solutions of periodic conformable differential systems with
non-instantaneous impulses has not been investigated. Such research can help us establish a more
complete theoretical system and further deepen our understanding of related issues. In this paper, we
mainly analyze the existence and stability of solutions for the systems given as below:

DY) = By(), t € (54, 1€Ng :=1{0,1,2,---}, 0 <k < 1,
Y =T +Cy(), LeN:={1,2,---},

1.1
YO = (T +C)YE). L€ (gl [EN, (1)
() =), €N,
and
D) = By(W) +a(), t € (s, uml, [ €Ny, 0 <k <1,
Y) =T +C)y(;) + by, €N, (12)
Y =T +Cy() + by, t€ (6], LEN, ’
() =v(s), €N,
and
D??’(t) = BY(L) + ﬂ(L’ )/(L))7 Le (gh Ll+l]s l € NO» O <k < 1»
Y) =T +C)y() + b, €N, (13)

YO =T +Cy(y) + by, t€ (6l LEN,
y(s) =v(s)), €N,

in which 8 € R™" and C[ € R™ a U(g‘],Ll_H — R” and A : U(gl’tl+l] X R" —» R". {LI}IEN() and

{Sihien, satisfy @ = g = 6o <11 < 61 < < u < ¢ <y and B(X + Cz) = ([ +Cp)Bforl e N. What’s
more, J denotes the unit matrix.

We propose the following assumptions:

(G1) There are g € N and 6 € R, satisfy ¢, =, +6, [ € Nand ¢, = ¢+ 6, [ € Ny.

(G,) Foreachl €N, Ci,, = C;and b,y = b;.

Among the 6 sections of this paper, section 2 introduces the conformable Cauchy matrix Z(,-)
and discusses its properties. Section 3 discusses the results concerning the periodicity and stability
of the solution for (1.1). Section 4 gives the expression of the solution and sufficient conditions for
the existence of a periodic solution for (1.2). Section 5 studies the periodic solution of (1.3). Last,
examples are given to verify our results.
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2. Preliminaries

Set Q = [Q, +) and PC(Q,R") := {y : Q = R" : y € C((, u+11,R"), [ € Ny, there exists y(¢;)
and y(¢)), I € N with y(¢;) = (1)}, where C((;, 1411, R") denotes the space of all continuous functions

from (¢, ¢741] into R” with ||y|| = sup |ly(¢t)||. One denotes a = (aj,--- ,a,)" € R" with ||a|| = {nax la;]
€Q <i<n

n
and a € R™" with |la]| = max ] |a;jl.
1<i<n j=1

To start, one presents the relevant concepts.

Definition 2.1. (see [20, Definition 2.1]) The conformable derivative of a functiony : Q — R is

Q L Y+ e — @) —y(0)
Dy = lim .

@ = lim DH.

,1>Q, 0<k<1,

Remark 2.2. Ify € C'(Q,R), then DKQ)/(L) =(t-Q"™ ().

Definition 2.3. (see [20, Notation]) The conformable integral of a functiony : Q — R is

IO = L Y(9)d (s, Q) = fa(g - Q" 'y()ds, 1>Q, 0 <k <1,

if Q = 0, then we write d (¢, Q) as d,(s).
In order to derive the solution for (1.1), we present this definition.

Definition 2.4. Denote the conformable Cauchy matrix Z(-, -) as

¢(Q,l) (-, * (5=, ¥ 0-1 (g1 -sp~
S | R . e
I=¢(Q¢)+1

where ¢(Q, 1) denotes the number of v existing in (Q,1) and z, := max{0,z} for z € R. If p(Q,1) =

Q) #(Qu-1
¢(Q, <) then [ (T+Cp=1, % =0
I=p(Q¢)+1 I=¢(Q5)

Theorem 2.5. The solution y(1,¢;y.) € PC(Q,R") of (1.1) with y(g) = y. is

YL, 6 v:) =E(L Sy, t 26> Q.

Farticularly,

Yy = YL Qv
= E(,Qva

720 sp@n)” #Qu-1 (4s1-5P"
= 1_[ (7 + Cl)eg[(f)frzho ﬁ]n}

=1
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Proof. There are many conditions to consider.
Condition 1: ¢(Q,1) = ¢(Q, ).
(i) Set any ¢, ¢ € (g, 441], for ¢ € [, ¢1], by Remark 2.2, we obtain

B(l—s‘o)’(

YO =€« ya

and when ¢ € (11, ¢1],

(Z +Coy(@y)
(11 —50)*

(I +C)eP = ya.

040)

For ¢ € (g1, 2],

(=¥
Y& = e y(s1)
(=¥ (11 -50)*
= & (T +C)EF  yg

(11 —s0)"

= (@ +Cpetl Ty,

and

(s—sX | (ty—s)* ]
K

Y(§) = (I +Cetl =5y,

So

(=" (="

Y@ = 255 (),

Then for a positive integer /, we suppose that the following equalities hold.
When ¢ € (¢, t411,

PGy ¥
ORI ()
(=X (=51 ¥ (11 —0)<
= (I+Cl)(I+Cl—l)"'(I‘f‘C])eB[ S S g 0 ]'ya’

and When LE (l’l+] b gl+1]7

040

'+ Cry(yyy)
(e 1-sD*

T +Cr)e® 7 y(s)

(yy1-spD* | =~ (11 —s0)*
B[ K + K et K ]

= (+C)T +C)--- (T +Cye Ya-
Thus, for ¢ € (g41, 41421,
YO = T )
= (T +Ci)(T +Cp)e e (T + OBl R ehns 58]
and
¥(©) =T +Cr)T +C) -+ (I +Cpe® [Fmtes mk+"'+ul_:0)K])’a~
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In conclusion,

(=sp* (5=

y@ = A5 ).

(i) Set any ¢, ¢ € (11,51, by
Y =T +Cy(y),

we know y(1) = y(s).
(iii) Set any ¢ € (ty@q): Sv@e] and any ¢ € (Sp@o: to@o+11;

("9(/5((1,1))'(

y(@) = e w )’(§¢(Q,L)),

then

(l*§¢(Q,L))K

Y@ =" y(s).

Condition 2: ¢(Q, 1) = ¢(Q, ) + 1.
(1) Set any ¢ € (Sp@.)> lo@c)+11 and any ¢ € (ty@.)» Sp@n ],

940

(' + Co@)¥(tyaqy)

tp@n=50@9)"  sp@e)”

(I + Coau)e® 4= “=ly).

(i1) Set any ¢ € (Sp@.¢)» lo@c)+1] and any ¢ € (Sp@.)» Lp@u+11,

@ §¢(Q~l))K
B——

) (1—4‘45(@,[) ¥

e (L + Chao)Yyqy)

Se@0” _750@e) | w@oss@e”
K

(T + Cyqo)e®l % 4y,

940)

(ii1) Set any ¢ € (tg@.¢)> So@s)] and any ¢ € (5> Sp@u >

040)

(I + C¢(Q,L))7(L¢_5(Q,L))

@0 —S8@)"
B
(L + Cyu)e « Y(Ss@e)

0@ =5s@)"

(L + Cyan)e x v($).

(iv) Set any ¢ € (tp@¢) Se@e] and any ¢ € (Sp@.)» Lo@u+115

(z—g(b(a#))"
B
e < y(Sp@)

oS00 _
= ¢« (L +Cpan)Ytyaq,)
—sp@n @0 —S8@e)"
g Tv@o” B0 A
K (I + C¢(Q7L))€ K 7(§¢(Q,§))
3 (=sp@)" 9@ =5p@e)"

= e <L +C¢(Q,L))e$ x Y($)

$40)

= €

AIMS Mathematics Volume 10, Issue 2, 4040-4066.



4045

“sp@0) | e@o=se@o"

= (I +Cyan)e® 4=y,

Condition 3: general ¢(@Q, ) and ¢(Q, §).
(1) Set any ¢ € (Sg@q)s Lo@e)+1] and any ¢ € (ty@u)»> Sp@n 1>

[ “@o=ss@o-1" | “@or1=5@e” _=sua@o”
K K

¥(t) = (T +Cpap) (I + Chae) X €°

(i1) Set any ¢ € (Sp@.¢) lo@c)+11 and any ¢ € (@) Lo@o+11

g[ 50@0)” | L@o=se@o-1" || “@o+1750@e)" _ $5w@e)
Y0 = (T +Cpau) - (I +Caeren) X 2L % : ;
(ii1) Set any ¢ € (tg@.¢)> So@s)] and any ¢ € (5> Ss@u >
tg@n=sp@u-1" (@e)+1-59@5)"
B
VW) = (T + Coan) - (I + Coqgrer) X Bl H ST HAMA ] )
(iv) Set any ¢ € (tg@.)> So@e ] and any ¢ € (Sp@u)s Lo@o+11
s | Wao=se@v-1" g@)+1759(@)"
B
VW) = (T + Caau) (T + ) x 8l BTy R8T ()
To sum up,
#@Qu @0’ (Sss@e” na
2 (“Se@o $759@Q)) HQO-1 (y41=5))
Yy = n 7+ 01)65[( « )+_( T )++21:¢(Q,s‘) %]’}’(g)
I=p(Q.5)+1
Let
H(Q.)

[1]

(=550 (s=sp@.e)" Qu-1 (1-sp¥
6) = (T + Bl () () i ]

I=¢(Q,6)+1

then (2.2) can be written as
Y663 ¥e) = 2L, §)Ys.
Particularly, when ¢ = Q,
Y, & vQ) = B, Qya, t 2 Q,

and

#(Q) sa@0” .
E(La Q) = 1—[ (I + Cl)eg[(f)ﬁz,:

=1

Qu-1 (yy1-sp~ ]
0 K .

Following this, we introduce the definitions and lemma that are used in this work.

Definition 2.6. If y(1) = y(t + 9), ¢ = Q, then y(-) is 6-periodic.

=y,

=y,

(2.2)
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Definition 2.7. If there are constants L > 1 and v > 0 satisfying
IE@ ol < Le™, Q<¢ <y,

then system (1.1) is exponentially stable.

Lemma 2.8. (see [33]) Let B € R™" and ¢(B) = max{R{|l € o(B)}. Then for any 0 > 0, there is
Lg > 1 such that

”e$L|| < Lge(go(8)+9)t’

for any ¢ > 0. Here o(B) is the spectrum of B.
Lemma 2.9. (Gronwall inequality, see [34]) Set x(-), f(-) as the nonnegative continuous function

on [ty, o). If

!
x(1) < xo + f f()x(s)ds, xo >0, t > 1,
fo

then

Ji Fes)ds

x(t) < xpe t = 1.

Next, we present the properties of E(t, §).
For the following results, we assume

) L1 — S1)" L1 — S~
o=supl|lZ +Cjl| < o0, A; = 1nfM < oo, Ay = supM < 0
leN leNg K leN K

2

and let

Lo e® <0,
B A, QO(B)+Q > 0.

Theorem 2.10. When Q < ¢ <, there are

||E(L, §)|| < Lge(w(3)+9)/le¢(§,t)(lnQ+(¢(B)+9)/l),

or

IZ(, o)l < Lge¢(§,t)(lng+(<p(8)+9)/l)'

Proof. For any 6 > 0, with ¢ € (4@, te@e+1], t € (Sp@.)» to@u+11, by taking the norm of (2.1), we
can get

Ko B[M_MJ&:MQWI (t1+1—é7)"]
E@ol = I [| @+cpet— o 7 Fran
I=p(Q,5)+1

< etsomep B[ TEEicon] o [ @B oMo @B 0.
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With ¢ € (Sp@e) lo@sr+11> ¢ € (Lo Sp@ol, there is

HQy

6750@0)" | ¢ @01 (p1=sp"
—_ B|- OS2
Bl = I [] @ +cpefl e ety
I=¢(Q.5)+1
< efsomep (B0l
< Lge¢(§,t)(1n9+(tﬁ(53)+9)/1).

Theorem 2.11. Suppose that (G) and (G,) hold, we have

E(,¢) =E@mMEMm¢), Q<s<n<t
Proof. By the form of (2.1), we have

#(Q.)
(f +C 1)
I=¢p(@Qm)+1

_ Bl(henl) (Tuanty puan il ]

E(,nEM, )
R sy (o « "
P Q) S=Sp@s) HQm-1 (p41-5])
X l_[ (I+Cl)€B[( ) (e )++Zl:¢(22,s‘) et |
I=p(Q.)+1
=2, ©).

Theorem 2.12. If (G) and (G,) hold, we can obtain
Elt+06,¢+0)=E(¢), Q<g¢<L.

Proof. By using (2.1), there is

¢(Q,L+6) . K . . K
(+0-5pQu+s)) (§+6-54(Q.c+5) HQu+8)-1 (yp1-5)~
), ~(As) Ly e |

(_Z' + C l) 68 [( K I=p(Q.5+6) I3
I=p(Q,s+6)+1

Q)+
¥Q0%g “*‘5*<9¢(a,:>”>“) (ﬁ’f*(%(a,o“”)‘) #Qu+q-1 (tz+1-s‘z>”]
¢ K ++Z

= 1_[ ( I+ Cl)eEg [( K =¢@Q¢)+q K

I=¢(Q.9)+q+1

E(t+0,6+0)

H(Q) (mnm 1 (e .
B[( S¢@Qu) ) _( ST59(@Qs) ) +30@QO-1 (e =) ]
= l_[ Z +Cpe Ko « + T LI=p@Q) T«
I=p(Q.)+1
==, ¢).

Theorem 2.13. Let (G,) and (G,) be satisfied, for N € N, then

E(t+N6,Q) = 2L, QIEQ+6,Q)1".

AIMS Mathematics Volume 10, Issue 2, 4040—4066.
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Proof. Theorems 2.11 and 2.12 obtain

¢(QL)+ Ng (+NO—6 4@+ N5) H@Q+Ng—1 (t741-5))
L Ut
E(+N&,Q = (I + Cetl (o) v ]
=1
N
T 5 el o |
= l (4 K + = K
=1
#(Qu+Ng No—(c K
1 ¢ #(Q.) TN HQO+Ng-1 (1P~ 1 Cz) Ng-1 (p1-sp¥
= (1 + el ) iy e >qTU+mewJT*
I=Ng+1
#(Qv q

_ l—[ (T + Cz)e [( - %@o) ) qu(au 1 (‘l+1 spX ] “_[(I + Cl)eBZq 1 <tz+1ksz> ]N

=1 =1

= ZLQIEQ+6,Q]" .

3. Linear homogeneous problem

The focus of this section is on the linear homogeneous problem.

Theorem 3.1. Let (G,) and (G,) be satisfied; one of the results follows:
(i) (1.1) has the unique trivial 5—periodic solution iff rank(I — E(Q + 6, Q)) = n.
(ii) (1.1) has at least one nontrivial 6—periodic solution iff rank(I — Z(Q + 6, Q)) < n.

Proof. Sufficiency: (i) If rank( — E(Q + 6,Q)) = n, then (I — E(Q + 6,Q))y = 0 only has the zero
solution, thus the solution of (1.1) are trivial.

(i) If rank(I — Z(Q + 6,Q)) < n, then there exist nonzero solutions of (I — Z2(Q + §,Q))y = 0
and (1.1) has nontrivial d—periodic solutions.

Next, we prove the necessity via the method of proof by contradiction:

(1) If rank(7 —E(Q+0, Q)) < n, then (1.1) has nontrivial 6—periodic solutions, which is contradictory
to the given condition. Thus, rank(I — E(Q + 6,Q)) = n.

(i) If rank(f — E(Q + 6,Q)) = n, then (1.1) has the unique trivial 6—periodic solution, which
contradicts the fact that (1.1) has at least one nontrivial §—periodic solution. Thus, rank(I — Z(Q +
0,Q)) < n. O

Before the discussion about the stability, we introduce this relationship.

Theorem 3.2. Let (G,) be satisfied; one has

i #(s, 1)
1m

=m0 L= ¢

_4
5
Proof. Using (G), with ¢ € [M6, (M + 1)6] and ¢ € [N, (N + 1)d] where M < N, there are
N-M=-15<1t-¢<(N+1-M),

AIMS Mathematics Volume 10, Issue 2, 4040-4066.
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and
N-M-=-1g <o, 1) <N +1- M.

Hence,

(N—M—l)q<¢(§,t)<(N+1—M)q
N+1-M¥§~ 1t—-¢ ~ N-M-=-1)"

It obviously holds that t — ¢ — o0 iff N = M — 0. So,

and

Next, we consider the stability of (1.1).

Theorem 3.3. Suppose that (G1) and (G,) are satisfied. If Ino + (¢(B) + )4 < 0, then system (1.1) is

exponentially stable.

Proof. Theorem 3.2 implies that for an arbitrarily small £ > 0, one has

P, 0 g' <e
L—¢ 0

and
q q
(5 —&)t-¢)<¢(s,0) < (5 +e)t—¢).
For ¢ € (¢4Qu)» to@u+11, with any € € (0, 4y, Theorem 2.10 implies

Ly e PB)+0)A ;0 QU0 +(p(B)+0)A)

12, QI

IA

Ly B0, {-&)(In o +H@(B)+O)D(-Q)

IA

Ly PB)+6I e—(s—%)(ln 0+(<P(3)+0)/1)(L—Q)’

IA

in which L = Lye*®* > 1 and v = (¢ — %)(lng + (p(B) + 6)A) > 0.
For ¢ € (141, Sp@u ], one has

L e @0In+p(B1+0)0)

12, QI

IA

Ly P 1—-£)(In o HP(B)+O)D(-Q)

IA

Ly e ¢ HIno+He(B)+O)D(-Q)

IA

inwhich L = Lyandv = (¢ — %)(lng + (p(B) + 6)A) > 0.
Hence, (1.1) is exponentially stable.

AIMS Mathematics
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Theorem 3.4. Suppose that (G,) and (G,) are satisfied. If there is a { > 0 such that
1
¢(B)+6+/:llngs—§<0, 3.1
where

ﬁ—{ A, {+o(B)+6<0,

Ay, (+@(B)+6 >0,
then system (1.1) is exponentially stable.

Proof. 1t is clear that

(t = Sp@n)” Q! (Li+1 — S
(7) n ; =10 > (@0 - DA, (3.2)

Qu-1
Z e g’) < ($@Q0) + Dy (3.3)

((L - S‘¢(Qz))K)
1=0
Combining (3.2) with (3.3), we obtain

1

= sp@)y " o - o)
0@0 - Dy = (—22) o 2, T S w@o b

and
/12[(0 S'¢(QL))K) Z): (41 — S‘l)] 1 < ¢(@Q.0)
< %[((L—S'Z(a,t)) )+ Z;O (Lz+1;§z)'(]+l. (3.4)
So

—AL + e(B) + 0)P(Q,0)
—( + @(B) + 9)[/11 (((‘ Sp@n)” ) 4 th(QL) 1 (U1 g/)“) " 1]
= —({ + p(B) + O (et sad) |y 0@t | ) (4 o(B) 4 6), £+ p(B) +6 <0,
(€ + 9B + OLE((se)y 50 ety )

(s suarl'y z"’@” ! ”“] + 4+ @(B) +0), {+9(B)+6>0,

== +¢(B)+0)
= +e®B) + 9)[(( S9@0) ) Z (”“ s M2+ 0(B) + 0, (3.5)
=0
Equation (3.1) implies
_ ()
“A +9(B) + O$@Q 1) = $@Q 0 Ing > > In|II +Cill (3.6)

=1

AIMS Mathematics Volume 10, Issue 2, 4040-4066.
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With (3.4)-(3.6), we obtain

(ax)) Q)
L— g(ﬁ(Q,L))K)
— ] +
K

w®)+0)(* 3 = =), + 2, iz +Ci

+ =0

< _g[((‘ So@0)" ) Z): (1+1 1" ]+Z|§+¢(B)+9|

=0

< L@, 1) + AL + ¢(B) + 6.
Finally, we know

L 2¢(Ql) 11'1||]+C[||+(‘,0(B)+9)[(( §¢(QL)) ) Z‘P(Ql) 1 (‘/#—1 Sl) ]

12, Q)

IA

IA

L@+ = (3-e)- Q)

in which L = Lye™+®*" > ] and v = £A,(4 - &) > 0.
Hence, (1.1) is exponentially stable. O

4. Linear nonhomogeneous problem

This section considers the linear nonhomogeneous problem.

We present the following condition: (G3) a(t) = a(t + 9) for¢ € G(gl, U1l

Following this, we present the solution of (1.2). -
Theorem 4.1. The solution of (1.2) with y(Q) = yq is

¢(Qu-1

L+1
Y@ = E@Qyaq+ Z f 2 §)a(s)(s — ) 'dg
=0 st
L #QV
+ [ B - suan s+ Y E b @.1)
S¢@uo) =1

Proof. Fort € [, 1],
Y1) = E(t, Q)yq + f E 9)als)(s — s0) ' ds.
Y]

If (4.1) holds for ¢ € (Sp@.)-1, to@n ], then

d(Q)-2

L+ 1
YO = EGQya+ Z f 2 §)a(s)(s — s 'dg
=0 Vs

#(Qu)-1

L
* f 2, §)a6)(s = Spn-0)* s+ > E,s)by
SHpQu-1 =1

and for ¢ € (ty@u) Sp@nls

Y© = (I +Coan)¥(tyq,) * boao

AIMS Mathematics Volume 10, Issue 2, 4040—4066.
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6QU-1
= T+ c¢<a,t>>[5<c,;@,1), Qra+ ). f (g0 )a(6)(s — 1) dg
=0 st
HQu)-1
+ Z Elty@uy S‘l)bl] + Dy@.)-
=1

Next, for ¢ € (§p@.)» to@o)+11s

vy = 2, Spen)Y(Se@n) + f E(t, 9)a(s)(s = Span) ' ds

Sp@Q0)
= E(L, g¢(Q,L))(I + Cqb(Q,L))E(L;(QL)a Q)VQ
Q-1

Li+1
) f E(t Ss@0)d + Co@)Eli g, $)al§)s — s ds
1=0 Sl

#Qu)-1

+ Z E(t Sp@u)d + Cy)Elty g, SDb1+ Bl Span)byao
=1

1A
+ f E(t, 9)a(s)(s = spau) ' ds
SHQ

HQO-1
= E0Qya+ ), f E(, §)als)(s — s ds
=0 Ys
#QY

L
+ f 2, §)a($)(s — a0 'ds + D E(t, sb.
S0 =1

With the mathematical induction method, we obtain

HQO-1
YD) = EGQye+ Z f 2t §)als)(s — ¢ dg
=0 st
Q1)

+ f £ 9)a(s)(s =~ sp@n) ds + Z E(t, sDbi.
SH@.)

=1

O

Theorem 4.2. Suppose that (G,), (G,), and (G3) hold. If the solution of (1.2) is bounded, then it is
o0—periodic.

Proof. Since the solution of (1.2) is bounded, one set y(Q + nd) is bounded. Using Theorems 2.11
and 2.12, one obtains

(n+1)g-1 "
Y@+ (n+1)8) =E(@Q+ (n+ 1)6,Qyq + Z f 2@+ (n+ D)6, ¢)a(s)(s — s 'ds
=0 st
(n+1)q
+ D E@+ (n+ Do, b
=1
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ng-1 441
=E@Q+ (n+1)5,Q+ nd)[E(Q + 16, Q)yq + Z f E(Q + 16, ¢)a(s)(s — ¢) 'ds
=0 vs!
ng (n+1)g-1 el
D E@+ b+ ), f 2@+ (n+ 16, 9)a(s)(s — )" ds
=1 I=ngq St
(n+1)q
+ ) E@+ (n+ Do, ab
I=ng+1

g-1 Li+1
= E(Q+06,Q7(@Q+no)+ ) f 2@+ (n+ D)8, + nd)als +nd)(s — ) "'d
1=0 VYS!

q
+ D EQ@+ (04 1)6, 61+ n6)byng
=1

g-1 Li+1 9q
2@+ 6, Q@+ nd) + ) f 2@+ 6,9)a(s)(s - ¢)'ds + )" E@Q+6,6)b,

=0 V! =1

E@+6,Qy(Q+nd) + T,

where

g-1 441 g
Iy = ; fg E@Q+6,5)als)(s — ¢)'dg + Z E(@+6,6)bi.

I=1
Hence,

n—1
F@Q+no) = ENQ+6,Q7Q + ) E'@Q+5,QT,.

=0

With the proof by contradiction, one supposes that y(¢) is not the §—periodic solution of (1.2). So there
is not a yg € R” such that

I -Z2@Q+6,Q)yq =T,
Fredholm alternative Theorem implies that there is a Z € R” satisfying
I-E'Q+6,Q)Z =0, <I',,Z>#0.
Since (F —Z7(Q + 6,Q))Z = 0, with any n € N, we have [Z/(Q + 6,Q)]"Z = Z. Also,

n—1
<HQ+n8),Z> = <E'Q+5Q¥Q+ ) EQ+6Qr,Z>
=0

n—1
<HVQ,[E"Q+6,QI"Z >+ ) <T,[EQ+5Q1"Z >
=0
= <YQ),Z>+n<TI, T >> o0, asn — o,

which is contradictory to the boundedness of y(¢). So y(¢) is a d—periodic solution of (1.2).
O
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We analyze the existence of periodic solutions for (1.2) in two different situations.

Theorem 4.3. Suppose (G) and (G,) hold. If det(I —Z(Q+6,Q)) # 0, (1.2) has a 6—periodic solution
with
yo= T -E@Q+6,Q)'T,.

Next, if det(Z — Z(Q + 6, Q)) = 0, we present

DIBW = —BTBW), L € (1 un1], [€Np, 0 <k <1,
B =T +C) B, LN,

BW =T +CNH'BE), L€ (sl LEN,

B(s)) =p(s)), LeN.

Theorem 4.4. Let (G)), (G»), and (G3) be satisfied. (1.2) has a 6—periodic solution iff < fq,I'; >= 0,
where Bq is the initial value of (4.2).

4.2)

Proof. (1.2) has a 6—periodic solution iff there exists yq such that
I -E@Q+6,Q)yq =T,
Then,

<Bal,> = <fa.(I-EQ+6,Q)yq>
= <(I-E@Q+6Q) Bava >
= <(I-E"(@Q+6Q)Bavq >
= <0,79>=0.

5. Nonlinear problem

This section studies the —periodic solution of (1.3).
One presents the conditions:

(G4) Fory e R" and ¢« € (g1, 411, Al +6,y) = A, y).
=0

(Gs) Fory e R"and ¢ € | (g}, t51], there is a A > 0 such that A, )| < A.
1=0

One studies

DY) = By() + A, y(V), v(si-1) = Vi1, t € (Si=1,ul, 0 <k <1, [ €N,

and the solution is

Y(©) = B, )y + f E(t, §)A(s, y())(s — 61-1) ' ds. (5.1)

Si-1

We set this mapping
Gi(yi-) =T +C) oy + by (5.2)

AIMS Mathematics Volume 10, Issue 2, 4040—4066.



4055

Equation (5.1) implies

(y=s1- ¥ Lgﬂ p =511
D < L@ ==ty (e|¢(3>+9| L1 1)’
Iy @l 0 i1l 2B + 0]

and (5.2) implies

B0 U=si=* oLyA G=s1-)" -
I < oLyee®r o (el<p(8)+9| L 1) + 5
IG(yi-DIl < oLy lyi-ll oB) 0]

where b = max ||b]|.
leN

Then we construct this operator

g::gqogq—lo"'ogla

(=5~
and set y; = B = o,

Next, one presents the norm estimation of G.

Theorem 5.1. If (Gs) holds, there is

q ﬁ qg-1 g-1 1
IGIl < ]—[ xilall+ Z] Uwq Mg xinl =1
q q
+1 7 ﬂw _
(IZ;‘ Jrlwqj P gt

Proof. For [l = 1, there is

oA —
< — (v -1 +0b.
Iyl < @wxillyall + o) + Ql(Xl )+

For [ = 2, there is

wA
Iyall - < WX2||71||+—(X ) +b

lp(B) + 6|
oA — oA —
< W)(z(w)(lﬂ)’a” W(X 1)+b)+m()(2—1)+b
Wx LW oA -
< - —(yr— 1 .
< wxrwyllyall + P (B)+6’|(X1 1) + wy2b + P (B)+9|(X2 )+b
For [ = 3, there is
oA —
—— (=D +b
llysll < wX3”72H+|gp(B)+6|(X3 ) +
wxﬂﬂ'ﬁ - W§ -
< w (w w + (- D+woyb+ ——O» -1 +b)
3| @y@xillyall |g0(B)+9|(X1 ) X2 |90(8)+0|(X2 )

(5.3)
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wA -
+— -D+b
@Y
w;mwxzwﬁ - Xg?ﬂﬁ -
< + -+ b+ -+ b
< wywxrwxillyall 0(B) + 0] (1 ) + TY3WY2 o(B) + |(X2 ) + @x3
oA —
+— -1 +b.
@+

Suppose that (5.3) holds for [ = ¢ — 1; when [ = g,

oA

H+b
@ g

||7q|| < wXq”’)’q—l”

2

A 9=2 q- y
wXq[wq HXIHYQH m Z an No-1---Xjnlxj—1)

=1 j=l

IA

—1 J—

L)

oA ) , — oA —
+— _—1+( S 7R -+1)b]+— -D+b
|(,D(B)+9|(Xq 1 ) ; 2 w Xq 1 )(/ W(B)+9(Xq )
q = q-2 q-2 -2
A . w
= @' | |yllvall + ———— @
];)a vall+ g llz | [ a0 = D+ gt -
g-1 g-1 —
. — — Aw —
+ w1 deexib+wyb+ ———— (- D+ b
1] XaXq-1 Xj X q |¢(B)+0|(Xq
q — q-1 g-1
A
= @] Lalvell + @y X O = 1)

=1
q

=
q
_; - w —
+ijqf+lxq...ij B + I(X D+b
=

&&I 1:]

._

= q-1 q-

A
yilyall + le @YX = D

=1 =1 j=I

~.

O

Following this, we derive the equivalence between the 6—periodic solution for (1.3) and the fixed
point of G.

Theorem 5.2. If (G)), (G,), and (G4) hold, (1.3) has a 6—periodic solution iff G has a fixed point.

Proof. Sufficiency.
According to the definition of G, one has

Ya = Gv@) =G40G4-1° - 0Gi(yQ)
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g-1 441 9q
= E@Q+6Qya+ ), f 2@+ 6, A V(&) — )" 'ds + ) E@Q+6,6)b.
=0 YS! =1

For ¢ =t + N6, Theorems 2.11-2.13 derive

Y() = ¥+ N6) = E@+ N6, Qy(Q) = [EC + 6, D]"EG Qy(Q),

and

yit+06) = v+ (N + 1))
= Z@+ N+ 1)5,Q)yq
= [EC+ 601" EC Qya
= [E@+6D1"EC+ 6,Qa
= [E@+6D1"y(@+9)
= [EG+6,D1"EC+6,Q+6)y(Q+ )
= [EC+6D1"E@ Q)ya.
then y(¢ + 0) = y(v).
Necessity.
If y(v) is a 6—periodic solution of (1.3), then G(yq) = yq and yq is a fixed point of G. O
Next, we present this condition:

(Gg) For y e R" and ¢ € | J(g, 4141], there is a L# > 0 such that [|[A(¢, y) — A, Y)I| < Lally — Il
=0
Theorem 5.3. Let (Gy), (Gy), (Gy), and (Ge) be satisfied. If

3 =s_1)¥
q (LoLatlpB)+0) 3, ————
wile =1 <1,

then (1.3) has a unique 6—periodic solution.

Proof. Set y(1) and y(¢) respectively as the solutions of (1.3) with initial values yq and .
By calculation, for ¢ € [gy, ¢1], there is

ly@ =yOI < EGC sollllya —Yell + f IE( DA, ¥(6)) = A, YIS = 50) ' dg

(=60

P t (=50) _(s=50)* _ —
< L@ g = 3ol + f Lee @S2 L iy(6) = 7(©)ll(s — s0)ds,

S0
then
O 1 ()~ 5Ol < Lollya - Yl + f Loe ¥ L l(e) = 7S — g0 ds.
S0

Using Lemma 2.9, one has

K
LoLa =50

o IABHO ||y(L) YOIl < Lellya = ¥alle™™ =,
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and

K
(LoLa+lp(B)+6)) =50

lly() = YOIl < Lollya — ¥elle
Next, (5.2) implies

i =70 = 16170 - i@
< olly(e) = y()ll
< oLllya - ’)_/Qlle(LHLﬂ+|tp(3)+9|)@.

For ¢ € (g1, t»], there is

ly(@ = yOIl < IEG, sOllllyr =71l + f 12, OIIAC, ¥(§)) = A V(DS = ¢1) ' dg

2y s g sDF _ ‘ (s e _ 5
< LTy — 3+ f Lo? @S5 L iv(e) = 7(9)li(s = 1) d,
(S

1
then

_ (G0 _ _ ‘o = _ e
eIy () = Yl < Lolly: — 9,1l + f Loe O Laly(e) = 7(9)li(s — ¢1) ' ds.

S1
Using Lemma 2.9, one has

(=¢¥

. o _ _ ,
e Ty () = YOI < Lollyr = ¥ lle™™

and

_ _ (=¢)*
@ = YOIl < Lellyr = yylle®ernte® =

- LG L YQ — LoLa+ + (1 -s0) | =g
e ATIP B+ L= 217

Next, (5.2) implies

=7l = 16:0m) - GiFI
< o) - 7wl
1-50)¢ | (p=s
< (oLoYllyg - Folle @ (B 255),

According to the above calculation, there is

||7q—1 - 7(1—1” = ||gq—1(7’q_2) - gq_l(?q_z)”
< olly(eyg-1) = ¥(g-Dll
(LgLa+lp(B)+6)) qil =5 *
= (QLH)q_IHYQ - )_/Qlle =

For ¢ € (¢,-1,14], there is

Iy = YOIl < 1EC, §g-DllllYg-1 = Vg-ill + f IZ( DA, ¥(6)) = A, F()I(s = 54-1) ' dg

Sq-1
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(t=s4-1¥ _ t (sg- 1 (554" _ 3
< LI |y, =y, + f L@ (=== Laly() - 7(©)ll(s — g4 ds,

Sg-1

then

—|<ﬂ(3)+9|

“ly@ - FOI < Lellygs - 7,41l + f Loe ¥ b(6) = F6)(s = 6p)ds.

Sq-1
Using Lemma 2.9, one has

(= S‘q ¥

~leB)+l > LyL
BT ) _F O < Lllygr - Tyl
and
(=641
A/ - Lol - B)+o|) —L—
V@ =FOI < Lally,1 = ¥, lletobarie®=—
W@y, G G
< Ly(oLo)? lyq — Yqlle BT peLarle@e)

Next, (5.2) implies

e =70 = 16,0g-) - G @,
oly(ty) = 7l

IA

q e K
(LoLa+le(B)+4) 3 Y

< (oLe)llya — Yqlle
Hence,
_ _ LeLarle@®a) 3, s
IGYa — GYall < @llya —Yqlle = :
Since
(LoLa+lp(B)+6) 3, ==
wile i=1 <1,
G 1s a contraction mapping. Then, G has a unique fixed point such that Gyq = yq. m|
Theorem 5.4. Let (G,), (G,), (Gy), and (Gs) be satisfied. If
q
p:=w! l—[ xi <1,
I=1
the Eq (1.3) has at least one 6—periodic solution and ||yg|| < ¥ := £ where

— qg-1 g-1
D = ARSY . 1
Y W(B) n 6’| - lj_[w g Xy )
7, 8 A
; gl ; 1) 0.
(2 R A A
Proof. |lyall < ¥ and (5.3) imply

IG(vall < plivall +p < .

Then G : B(0,¥) — B(0,¢¥). Brouwers fixed-point theorem implies that G has fixed points, and
Theorem 5.2 obtains that (1.3) has at least one —periodic solution. O
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6. Examples

Example 6.1. Consider (1.1). Let ¢y = %, K= %, =1+ %, u=1Lqg=1,6=1,1eN,and
_(-10 O 252 _ et -1 0 2x2
B—( 0 _S)ER ,C’l—( 0 &2-1 € R™,
7@—((1))€R2

And we can obtain

' e—lOL 0 e2 0
eB:( 0 e_SL),I+CI:(0 ez),
so||Z +Cjll =e€* Ino =2and

#(Q0)
#@Q0-1 (=5~ ]
1=0 K

ELQ) = H(I+cl)eﬂ[(w)++z_

=1

1
( Q. )x ¢~ 10Q0=(6(Q0+7)Z +¢@Q0) V2) 0
= ) ) 1
0 e 0 232 (¢@Q0+3)7 +4(QV V2)
Then, we set € = 0 = 0.5 and obtain
1))
12, Q)| = e A¢Qu+I+Q0V2),20Q0)

s V2 QU245 V2)

IA

45 V2,~(05-1)2-45 ‘/E)(L—%)’

IA

in which L = ¢*3V? > 1 and v = 0.5(4.5V2 - 2) > 0.
Thus, (1.1) is exponentially stable with L = ¢*5V2 and v = 0.5(4.5 V2 = 2).
Further,

_ 2 1=s0)* 62 6_10\/i 0
2@+6,Q = (I +Ce” 7 :(O ez)[ e_m)=

62—10‘/5
, (

0
rank(I — Z2(Q + 6,Q)) = n.

Then (1.1) only has the trivial 1—periodic solution.

Example 6.2. Consider (1.2) andx = 1,60 =0,¢;=1Ly=1-1,6=1,g=1,1€N,

0

oo(3 2)en(28)a-(3)

L—
Cl([) = ( ot )9 LE (gh Ll+l]’ leN.

Set
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It is easily obtain

pQY 3[( <‘*¢¢<Ka,t>)K ),~( “‘*%(Ka.g)“ ). f@’z‘)’l URE
1_[ (I +C)e 1=6@¢)
I=¢(Q,6)+1

Q-1

1 Q) - ¢(Q ) (2(1—§¢(0,L>)“)+—(2(§—%<o.c>)K)++[:¢%C)Z(LM—9)”
0
[ d(Qu)-1

1 (4 = 64@0)), — (4(s = sp@e) ). + ¢(Z )4(Lz+1—§1)

1

HQL
(2(L §¢(QL))K) (Z(C s‘¢(ag))) + Z) 12(ll+1 YA

<\

Q)1

1 (40t = sp@0)), — (4(s = Sp@e) ), + ¢(Z )4(L1+1 - )+ Q1) - d(Q,5)
=p(Q.s
1

Next,

L] H(Q1)
r, = f (1, Q)a(s)(s = ¢o)'ds + D" E(1, ¢)by
S0 =1

V22
= 2 2 |,
0

_ B eV2 V2 1 015,V2
E(1,60) = 0 V2 ,

and

1 eV24215,V2

N

V2
2
Yo=T -E(1,6)'T, = [ 1eV? ]
Thus, for t € (Sp@u)» Lo@o+11

dQO-1
Y, Q,¥q) = E(t, Q)yq + Z f B, 9)a(s)(s — ) dg
=0 St
#Q0)

L
* f 2, §)a($)(s — a0 'ds + D E(t, s)b
SoQo) =1
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1 2 v
= 2-swan) 2+ V2@ | ——7-
0
_ 1 1 #@u-1 1
QUL rut [ 2-6p@0)? 26-60@0) 2+ S 2ue1—6)? 1
+ e 1=6@¢) (c—¢s»? |ds

=0 Ysi 0

| 1
JA 2 _ . 7_2 _ )2 1
+f ( e2=ss@0)? ~2s=5p@) (¢ — §¢(Q,L))2 ]dg
SH@Qu0) O

1 #@u-1 1
() 2t-sp@u)2+ 2 2Aur1—sn2
" Z e 1=6(Qs))
=1 0
M _v3
1 2 § 2
= 2(=5p@0)? [ e\f¢(Q [)ﬁ
0
1 ¢@o-1 |
#(Q1-1 L+ 1 —2(§—§¢(Q’§))z+ 2 2us1—sn2 1
+ Z e 1=6@Q¢) (¢ —¢)): d¢
1=0 St 0
L p@o( * 3
. e J 1 2 2Aur1—sn?
+f [ e 2(5—ss@aq) (¢ — §¢(Q,L))2 d§'+ Z el=@sp +
So@Q.0 0 =1 0

1
— ez(l—s‘ H(Q0) 2

v V21, \29(@Q0)
1-e 2 2 1-eV2

0

S

1
+ e2(t—§¢(a,l)) 2

1 1 1
-2(t-s4@u)2 L 20-ss@n)? _ 1 ,-20-ss@0)2 o 1
x[ (0= Sa@o)e T — (L= Gyqu)te M TSHANT — Jesan? 4 g

0
1 1-eY29@Q0
+ ez(t—%(o.L))z l—eV2

0
N2 _\2 1 1
— 2 L20- l)j — — — — 1 — l l 2(e— L 2
= l—eV2 4 (=50 (L §¢(Q,L)) (L g(ﬁ(Q,L))Z 5 + 26 (=S80

0
Then

Y +1,0,79) = v(1,0,vq),

so there is a 1-periodic solution. The component of the solution is in Figure 1. Further,

ﬁ_ﬁ 1
2 2 2 V2

< = = —
IW@H_I_eﬁe +7e"

and Theorem 4.2 is verified.
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-0.4

the component of the solution

time t

Figure 1. The component of the solution for Example 6.2.

Example 6.3. Consider (1.3) and k = %,g‘o =0,¢g=Ly=1- %,5 =1,g=1,l€N,
(t —g)cosy

A, yW) = ( 0 ) t€(suqel, €N

Set

— (1 -0)" q Nl
Next, A = %,Xl = WBHITE = o V2 g = oLy = 11—0,p =wl[|xy;=% <1and

—_ — e
R —— -1 b =
P= @ g~ Dt 20

Thus, (1.3) has at least one 1—periodic solution and 1 = |lygll < ¢ = 1.96.
7. Conclusions

In this paper, we investigate the existence and stability of solutions for periodic conformable
systems with non-instantaneous impulses. A key focus is the introduction and analysis of the
conformable Cauchy matrix and its properties. We conduct separate studies on linear homogeneous,
linear nonhomogeneous, and nonlinear systems. For the linear nonhomogeneous system, we employ
the constant variation method to derive the solution expression. Moreover, we discuss the existence of
periodic solutions for the linear nonhomogeneous system under two conditions. Regarding the
nonlinear system, the existence and uniqueness of periodic solutions are transformed into the
existence and uniqueness of fixed points of a corresponding operator. This transformation enables us
to utilize related fixed-point theory to analyze the existence of periodic solutions.
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