Research article Special Issues

Linear regression estimation using intraday high frequency data

  • Received: 18 February 2023 Revised: 16 March 2023 Accepted: 19 March 2023 Published: 03 April 2023
  • MSC : 62J05, 62M10

  • Intraday high frequency data have shown important values in econometric modeling and have been extensively studied. Following this point, in this paper, we study the linear regression model for variables which have intraday high frequency data. In order to overcome the nonstationarity of the intraday data, intraday sequences are aggregated to the daily series by weighted mean. A lower bound for the trace of the asymptotic variance of model estimator is given, and a data-driven method for choosing the weight is also proposed, with the aim to obtain a smaller sum of asymptotic variance for parameter estimators. The simulation results show that the estimation accuracy of the regression coefficient can be significantly improved by using the intraday high frequency data. Empirical studies show that introducing intraday high frequency data to estimate CAPM can have a better model fitting effect.

    Citation: Wenhui Feng, Xingfa Zhang, Yanshan Chen, Zefang Song. Linear regression estimation using intraday high frequency data[J]. AIMS Mathematics, 2023, 8(6): 13123-13133. doi: 10.3934/math.2023662

    Related Papers:

  • Intraday high frequency data have shown important values in econometric modeling and have been extensively studied. Following this point, in this paper, we study the linear regression model for variables which have intraday high frequency data. In order to overcome the nonstationarity of the intraday data, intraday sequences are aggregated to the daily series by weighted mean. A lower bound for the trace of the asymptotic variance of model estimator is given, and a data-driven method for choosing the weight is also proposed, with the aim to obtain a smaller sum of asymptotic variance for parameter estimators. The simulation results show that the estimation accuracy of the regression coefficient can be significantly improved by using the intraday high frequency data. Empirical studies show that introducing intraday high frequency data to estimate CAPM can have a better model fitting effect.



    加载中


    [1] L. Li, X. Zhang, Y. Li, C. Deng, Daily GARCH model estimation using high frequency data, (Chinese), J. Guangxi Norm. Univ. Nat. Sci., 39 (2021), 68–78. http://dx.doi.org/10.16088/j.issn.1001-6600.2020091601 doi: 10.16088/j.issn.1001-6600.2020091601
    [2] L. Li, X. Zhang, C. Deng, Y. Li, Quasi maximum exponential likelihood estimation of GARCH model based on high frequency data, (Chinese), Acta. Math. Appl. Sin., 45 (2022), 652–664.
    [3] X. Hui, B. Sun, I. SenGupta, Y. Zhou, H. Jiang, Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning, Electron. Res. Arch., 31 (2023), 1365–1386. http://dx.doi.org/10.3934/era.2023070 doi: 10.3934/era.2023070
    [4] Z. Li, B. Mo, H. Nie, Time and frequency dynamic connectedness between cryptocurrencies and financial assets in China, Int. Rev. Econ. Financ., 86 (2023), 46–57. http://dx.doi.org/10.1016/j.iref.2023.01.015 doi: 10.1016/j.iref.2023.01.015
    [5] T. G. Andersen, T. Bollerslev, Intraday periodicity and volatility persistence in financial markets, J. Empir. Financ., 4 (1997), 115–158. http://dx.doi.org/10.1016/S0927-5398(97)00004-2 doi: 10.1016/S0927-5398(97)00004-2
    [6] F. C. Drost, T. E. Nijman, Temporal aggregation of GARCH processes, Econometrica, 61 (1993), 909–927. http://dx.doi.org/10.2307/2951767 doi: 10.2307/2951767
    [7] M. P. Visser, GARCH parameter estimation using high-frequency data, J. Financ. Economet, 9 (2011), 162–197. http://dx.doi.org/10.1093/jjfinec/nbq017 doi: 10.1093/jjfinec/nbq017
    [8] Z. Li, L. Chen, H. Dong, What are bitcoin market reactions to its-related events?, Int. Rev. Econ. Financ., 73 (2021), 1–10. http://dx.doi.org/10.1016/j.iref.2020.12.020 doi: 10.1016/j.iref.2020.12.020
    [9] J. Saleemi, COVID-19 and liquidity risk, exploring the relationship dynamics between liquidity cost and stock market returns, National Accounting Review, 3 (2021), 218–236. http://dx.doi.org/10.3934/NAR.2021011 doi: 10.3934/NAR.2021011
    [10] D. G. Kirikos, An evaluation of quantitative easing effectiveness based on out-of-sample forecasts, National Accounting Review, 4 (2022), 378–389. http://dx.doi.org/10.3934/NAR.2022021 doi: 10.3934/NAR.2022021
    [11] Z. Li, H. Dong, C. Floros, A. Charemis, P. Failler, Re-examining bitcoin volatility: a CAViaR-based approach, Int. Rev. Econ. Financ., 58 (2022), 1320–1338. http://dx.doi.org/10.1080/1540496X.2021.1873127 doi: 10.1080/1540496X.2021.1873127
    [12] Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies?, Financ. Res. Lett., 50 (2022), 103308. http://dx.doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
    [13] H. Siddiqi, Financial market disruption and investor awareness: the case of implied volatility skew, Quant. Financ. Econ., 6 (2022), 505–517. http://dx.doi.org/10.3934/QFE.2022021 doi: 10.3934/QFE.2022021
    [14] T. Li, J. Wen, D. Zeng, K. Liu, Has enterprise digital transformation improved the efficiency of enterprise technological innovation? A case study on Chinese listed companies, Math. Biosci. Eng., 19 (2022), 12632–12654. http://dx.doi.org/10.3934/mbe.2022590 doi: 10.3934/mbe.2022590
    [15] Y. Liu, P. Failler, Y. Ding, Enterprise financialization and technological innovation: Mechanism and heterogeneity, PLoS ONE, 17 (2022), e0275461. http://dx.doi.org/10.1371/journal.pone.0275461 doi: 10.1371/journal.pone.0275461
    [16] Y. Liu, P. Failler, Z. Liu, Impact of environmental regulations on energy efficiency: a case study of China's air pollution prevention and control action plan, Sustainability, 14 (2022), 3168. http://dx.doi.org/10.3390/su14063168 doi: 10.3390/su14063168
    [17] Y. Liu, L. Chen, L. Lv, P. Failler, The impact of population aging on economic growth: a case study on China, AIMS Mathematics, 8 (2023), 10468–10485. http://dx.doi.org/10.3934/math.2023531 doi: 10.3934/math.2023531
    [18] Y. Liu, J. Liu, L. Zhang, Enterprise financialization and R & D innovation: A case study of listed companies in China, Electron. Res. Arch., 31 (2023), 2447–2471. http://dx.doi.org/10.3934/era.2023124 doi: 10.3934/era.2023124
    [19] C. Y. Choi, H. Ling, M. Ogaki, Robust estimation for structural spurious regressions and a Hausman-type cointegration test, J. Econometrics, 142 (2008), 327–351. http://dx.doi.org/10.1016/j.jeconom.2007.06.003 doi: 10.1016/j.jeconom.2007.06.003
    [20] E. Ghysels, V. Kvedaras, V. Zemlys-Balevic, Mixed data sampling (MIDAS) regression models, Handbook of Statistics, 42 (2011), 162–197. http://dx.doi.org/10.1016/bs.host.2019.01.005 doi: 10.1016/bs.host.2019.01.005
    [21] W. Huyer, A. Neumaier, MINQ8: general definite and bound constrained indefinite quadratic programming, Comput. Optim. Appl., 69 (2018), 351–381. http://dx.doi.org/10.1007/s10589-017-9949-y doi: 10.1007/s10589-017-9949-y
    [22] T. Latunde, S. L. Akinola, D. D. Dare, Analysis of capital asset pricing model on Deutsche bank energy commodity, Green. Finance, 2 (2020), 20–34. http://dx.doi.org/10.3934/GF.2020002 doi: 10.3934/GF.2020002
    [23] M. Stutzer, Style investing and the ICAPM, Quant. Financ. Econ., 2 (2018), 702–716. http://dx.doi.org/10.3934/QFE.2018.3.702 doi: 10.3934/QFE.2018.3.702
    [24] Y. Liu, Z. Li, M. Xu, The influential factors of financial cycle spillover: evidence from China, Emerg. Mark. Financ. Tr., 56 (2020), 1336–1350. http://dx.doi.org/10.1080/1540496X.2019.1658076 doi: 10.1080/1540496X.2019.1658076
    [25] F. Corradin, M. Billio, R. Casarin, Forecasting economic indicators with robust factor models, National Accounting Review, 4 (2022), 167–190. http://dx.doi.org/10.3934/NAR.2022010 doi: 10.3934/NAR.2022010
    [26] S. A. Gyamerah, B. E. Owusu, E. K. Akwaa-Sekyi, Modelling the mean and volatility spillover between green bond market and renewable energy stock market, Green Finance, 4 (2022), 310–328. http://dx.doi.org/10.3934/GF.2022015 doi: 10.3934/GF.2022015
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1653) PDF downloads(138) Cited by(2)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog