In the present paper, we prove the a priori bounds and existence of smooth solutions to a Minkowski type problem for the log-concave measure $ e^{-f(|x|^2)}dx $ in warped product space forms with zero sectional curvature. Our proof is based on the method of continuity. The crucial factor of the analysis is the a priori bounds of an auxiliary Monge-Ampère equation on $ \mathbb{S}^n $. The main result of the present paper extends the Minkowski type problem of log-concave measures to the space forms and it may be an attempt to get some new analysis for the log-concave measures.
Citation: Zhengmao Chen. A priori bounds and existence of smooth solutions to Minkowski problems for log-concave measures in warped product space forms[J]. AIMS Mathematics, 2023, 8(6): 13134-13153. doi: 10.3934/math.2023663
In the present paper, we prove the a priori bounds and existence of smooth solutions to a Minkowski type problem for the log-concave measure $ e^{-f(|x|^2)}dx $ in warped product space forms with zero sectional curvature. Our proof is based on the method of continuity. The crucial factor of the analysis is the a priori bounds of an auxiliary Monge-Ampère equation on $ \mathbb{S}^n $. The main result of the present paper extends the Minkowski type problem of log-concave measures to the space forms and it may be an attempt to get some new analysis for the log-concave measures.
[1] | C. Bär, F. Pfäffle, Wiener measures on Riemannian manifolds and the Feynman-Kac formula, Matematica Contemporanea, 40 (2011), 37–90. |
[2] | M. S. Birman, S. Hildebrandt, V. A. Solonnikov, N. N. Uraltseva Nonlinear problems in mathematical physics and related topics I, New York: Springer, 2002. http://doi.org/10.1007/978-1-4615-0777-2 |
[3] | J. L. M. Barbosa, J. Lira, V. Oliker, J. H. S. de Lira, Uniqueness of starshaped compact hypersurfaces with prescribed $m$-th mean curvature in hyperbolic space, Illinois J. Math., 51 (2007), 571–582. http://doi.org/10.1215/ijm/1258138430 doi: 10.1215/ijm/1258138430 |
[4] | V. I. Bogachev, Gaussian measures, American Mathematical Society, 1998. |
[5] | C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math., 30 (1975), 207–216. https://doi.org/10.1007/BF01425510 doi: 10.1007/BF01425510 |
[6] | K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26 (2013), 831–852. |
[7] | H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., 22 (1976), 366–389. http://doi.org/10.1016/0022-1236(76)90004-5 doi: 10.1016/0022-1236(76)90004-5 |
[8] | Y. D. Burago, V. A. Zalgaller, Geometric inequalities, Berlin: Springer, 1988. https://doi.org/10.1007/978-3-662-07441-1 |
[9] | D. C. Chang, J. Tie, The sub-Laplacian operators of some model domains, De Gruyter, 2022. https://doi.org/10.1515/9783110642995 |
[10] | D. J. Chen, H. Z. Li, Z. Z. Wang, Starshaped compact hypersurfaces with prescribed Weingarten curvature in warped product manifolds. Calc. Var., 57 (2018), 1–26. http://doi.org/10.1007/s00526-018-1314-1 |
[11] | K. S. Chou, X. J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math., 205 (2006), 33–83. http://doi.org/10.1016/j.aim.2005.07.004 |
[12] | A. Colesanti, I. Fragalà, The first variation of the total mass of log-concave functions and related inequalities, Adv. Math., 244 (2013), 708–749. http://doi.org/10.1016/j.aim.2013.05.015 doi: 10.1016/j.aim.2013.05.015 |
[13] | M. Émery, Stochastic calculus in manifolds, Berlin: Springer, 1989. http://doi.org/10.1007/978-3-642-75051-9 |
[14] | C. Eric, M. Mokshay, M. W. Elisabeth, Convexity and concentration, New York: Springer, 2017. http://doi.org/10.1007/978-1-4939-7005-6 |
[15] | N. F. Fang, S. D. Xing, D. P. Ye, Geometry of log-concave functions: the $L_p$ Asplund sum and the $L_p$ Minkowski problem, Calc. Var., 61 (2022), 1–37. http://doi.org/10.1007/s00526-021-02155-7 doi: 10.1007/s00526-021-02155-7 |
[16] | W. J. Firey, $p$-means of convex bodies, Math. Scand., 10 (1962), 17–24. http://doi.org/10.7146/math.scand.a-10510 doi: 10.7146/math.scand.a-10510 |
[17] | J. Fröhlich, A. Knowles, B. Schlein, V. Sohinger, Gibbs measures of nonlinear Schrödinger equations as limits of many-body quantum states in dimensions $d\le 3$, Commun. Math. Phys., 356 (2017), 883–980. http://doi.org/10.1007/s00220-017-2994-7 doi: 10.1007/s00220-017-2994-7 |
[18] | R. J. Gardner, A. Zvavitch, Gaussian Brunn-Minkowski inequalities, Trans. Amer. Math. Soc., 362 (2010), 5333–5353. http://doi.org/10.1090/S0002-9947-2010-04891-3 doi: 10.1090/S0002-9947-2010-04891-3 |
[19] | H. T. Georgii, Gibbs measures and phase transitions, De Gruyter, 2011. http://doi.org/10.1515/9783110250329 |
[20] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Berlin: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0 |
[21] | P. M. Gruber, J. M. Wills, Convexity and its applications, Birkhäuser Basel: Springer, 1983. https://doi.org/10.1007/978-3-0348-5858-8 |
[22] | B. Guan, P. F. Guan, Convex hypersurfaces of prescribed curvatures. Ann. Math., 156 (2002), 655–673. http://doi.org/10.2307/3597202 |
[23] | P. F. Guan, J. f. Li, A mean curvature type flow in space forms. Int. Math. Res. Notices, 2015 (2015), 4716–4740. http://doi.org/10.1093/imrn/rnu081 |
[24] | P. F. Guan, C. S. Lin, X. N. Ma, The Christoffel-Minkowski problem II: weingarten curvature equations, Chinese Ann. Math. B, 27 (2006), 595–614. http://doi.org/10.1007/s11401-005-0575-0 doi: 10.1007/s11401-005-0575-0 |
[25] | P. F. Guan, J. F. Li, M. T. Wang, A volume preserving flow and the isoperimetric problem in warped product spaces, Trans. Amer. Math. Soc., 372 (2019), 2777–2798. http://doi.org/10.1090/tran/7661 doi: 10.1090/tran/7661 |
[26] | P. F. Guan, X. N. Ma, The Christoffel-Minkowski problem I: convexity of solutions of a Hessian equation, Invent. Math., 151 (2003), 553–577. http://doi.org/10.1007/s00222-002-0259-2 doi: 10.1007/s00222-002-0259-2 |
[27] | P. F. Guan, J. F. Li, Y. Y. Li, Hypersurfaces of prescribed curvature measure, Duke Math. J., 161 (2012), 1927–1942. http://doi.org/10.1215/00127094-1645550 doi: 10.1215/00127094-1645550 |
[28] | P. F. Guan, C. Y. Ren, Z. Z. Wang, Global $C^2$-estimates for convex solutions of curvature equations, Commun. Pure Appl. Math., 68 (2015), 1287–1325. http://doi.org/10.1002/cpa.21528 doi: 10.1002/cpa.21528 |
[29] | B. Güneysu, Covariant schrödinger semigroups on riemannian manifolds, Birkhäuser Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-68903-6 |
[30] | Y. Huang, D. M. Xi, Y. M. Zhao, The Minkowski problem in Gaussian probability space, Adv. Math., 385 (2021), 107769. http://doi.org/10.1016/j.aim.2021.107769 doi: 10.1016/j.aim.2021.107769 |
[31] | Y. Huang, E. Lutwak, D. Yang, G. Y. Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math., 216 (2016), 325–388. http://doi.org/10.1007/s11511-016-0140-6 |
[32] | Y. Huang, Y. M. Zhao, On the $L_p$ dual Minkowski problem. Adv. Math., 332 (2018), 57–84. http://doi.org/10.1016/j.aim.2018.05.002 |
[33] | Q. N. Jin, Y. Y. Li, Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space, Discrete Cont. Dyn-A., 15 (2006), 367–377. http://doi.org/10.3934/dcds.2006.15.367 doi: 10.3934/dcds.2006.15.367 |
[34] | B. Klartag, V. D. Milman, Geometry of log-concave functions and measures, Geom. Dedicata, 112 (2005), 169–182. http://doi.org/10.1007/s10711-004-2462-3 doi: 10.1007/s10711-004-2462-3 |
[35] | M. Lewin, P. T. Nam, N. Rougerie, Gibbs measures based on 1d (an) harmonic oscillators as mean-field limits, J. Math. Phys., 59 (2018), 041901. http://doi.org/10.1063/1.5026963 doi: 10.1063/1.5026963 |
[36] | C. H. Li, Z. Z. Wang, The Weyl problem in warped product spaces, J. Differ. Geom., 114 (2020), 243–304. http://doi.org/10.4310/jdg/1580526016 doi: 10.4310/jdg/1580526016 |
[37] | Q. R. Li, W. M. Sheng, Closed hypersurfaces with prescribed Weingarten curvature in Riemannian manifolds, Calc. Var., 48 (2013), 41–66. http://doi.org/10.1007/s00526-012-0540-1 doi: 10.1007/s00526-012-0540-1 |
[38] | J. Q. Liu, The $L_p$-Gaussian Minkowski problem, Calc. Var., 61 (2022), 28. http://doi.org/10.1007/s00526-021-02141-z doi: 10.1007/s00526-021-02141-z |
[39] | E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the minkowski problem, J. Differ. Geom., 38 (1993), 131–150. http://doi.org/10.4310/jdg/1214454097 doi: 10.4310/jdg/1214454097 |
[40] | E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differ. Geom., 41 (1995), 227–246. |
[41] | E. Lutwak, D. Yang, G. Zhang, On the $L_p$-Minkowski problem, Trans. Amer. Math. Soc., 356 (2004), 4359–4370. |
[42] | V. I. Oliker, Hypersurfaces in $\mathbb{R}^{n+1}$ with prescribed Gaussian curvature and related equations of Monge-Ampère type. Commun. Part. Diff. Eq., 9 (1984), 807–838. http://doi.org/10.1080/03605308408820348 |
[43] | L. Rotem, Surface area measures of log-concave functions, Journal d'Analyse Mathématique, 147 (2022), 373–400. http://doi.org/10.1007/s11854-022-0227-2 |
[44] | R. Schneider, Convex bodies: The Brunn-Minkowski theory. Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781139003858 |
[45] | D. W. Stroock, An introduction to the analysis of paths on a Riemannian manifold. American Mathematical Society, 2000. |
[46] | Z. N. Sui, Strictly locally convex hypersurfaces with prescribed curvature and boundary in space forms, Commun. Part. Diff. Eq., 45 (2020), 253–283. http://doi.org/10.1080/03605302.2019.1670675 doi: 10.1080/03605302.2019.1670675 |