The present study is concerned with the construction of a new high-order technique to establish approximate solutions of the Telegraph equation (TE). In this technique, a novel optimal B-spline collocation method based on quintic B-spline (QBS) basis functions is constructed to discretize the spatial domain and fourth-order implicit method is derived for time integration. Test problems are considered to verify the theoretical results and to demonstrate the applicability of the suggested technique. The error norm $ L_{\infty } $ and the rate of spatial and temporal convergence are computed and compared with those of techniques available in the literature. The obtained results show the improvement and efficiency of the proposed scheme over the existing ones. Also, it is obviously observed that the experimental rate of convergence is almost compatible with the theoretical rate of convergence.
Citation: Emre Kırlı. A novel B-spline collocation method for Hyperbolic Telegraph equation[J]. AIMS Mathematics, 2023, 8(5): 11015-11036. doi: 10.3934/math.2023558
The present study is concerned with the construction of a new high-order technique to establish approximate solutions of the Telegraph equation (TE). In this technique, a novel optimal B-spline collocation method based on quintic B-spline (QBS) basis functions is constructed to discretize the spatial domain and fourth-order implicit method is derived for time integration. Test problems are considered to verify the theoretical results and to demonstrate the applicability of the suggested technique. The error norm $ L_{\infty } $ and the rate of spatial and temporal convergence are computed and compared with those of techniques available in the literature. The obtained results show the improvement and efficiency of the proposed scheme over the existing ones. Also, it is obviously observed that the experimental rate of convergence is almost compatible with the theoretical rate of convergence.
[1] | M. El-Azab, M. El-Gamel, A numerical algorithm for the solution of telegraph equations, Appl. Math. Comput., 190 (2007), 757–764. //doi.org/10.1016/j.amc.2007.01.091 doi: 10.1016/j.amc.2007.01.091 |
[2] | S. A. Yousefi, Legendre multiwavelet Galerkin method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 26 (2010), 535–543. https://doi.org/10.1002/num.20445 doi: 10.1002/num.20445 |
[3] | M. M. Hosseini, S. T. Mohyud-Din, A. Nakhaeei, New Rothe-wavelet method for solving telegraph equations, Int. J. Syst. Sci., 43 (2012), 1171–1176. https://doi.org/10.1080/00207721.2010.547626 doi: 10.1080/00207721.2010.547626 |
[4] | M. Inc, A. Akgul, A. Kilicman, Numerical solutions of the second-order one-dimensional telegraph equation based on reproducing kernel Hilbert space, Abstr. Appl. Anal., 2013 (2013), 768963. https://doi.org/10.1155/2013/768963 doi: 10.1155/2013/768963 |
[5] | M. H. Heydari, M. R. Hooshmandasl F. M. Ghaini, A new approach of the Chebyshev wavelets method of partial differential equations with boundary conditions of the telegraph type, Appl. Math. Model., 38 (2014), 1597–1606. https://doi.org/10.1016/j.apm.2013.09.013 doi: 10.1016/j.apm.2013.09.013 |
[6] | S. Abbasbandy, H. R. Ghehsareh, I. Haskim, A. Alsaedi, A comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation, Eng. Anal. Bound. Elem., 47 (2014), 10–20. https://doi.org/10.1016/j.enganabound.2014.04.006 doi: 10.1016/j.enganabound.2014.04.006 |
[7] | J. Rashidinia, M. Jokar, Application of polynomial scaling functions for numerical solution of telegraph equation, Appl. Anal., 95 (2016), 105–123. https://doi.org/10.1080/00036811.2014.998654 doi: 10.1080/00036811.2014.998654 |
[8] | D. Zhang, F. Peng, X. Miao, A new unconditionally stable method of telegraph equation based on associated hermite orthogonal functions, Adv. Math. Phys., 2016 (2016), 7045657. https://doi.org/10.1155/2016/7045657 doi: 10.1155/2016/7045657 |
[9] | S. Yuzbasi, Numerical solutions of hyperbolic telegraph equation by using the Bessel functions of first kind and residual correction, Appl. Math. Comput., 287 (2016), 83–93. https://doi.org/10.1016/j.amc.2016.04.036 doi: 10.1016/j.amc.2016.04.036 |
[10] | E. Kirli, D. Irk, M. Z. Gorgulu, High order accurate method for the numerical solution of the second order linear hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 2022. https://doi.org/10.1002/num.22957 |
[11] | R. K. Mohanty, An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation, Appl. Math. Lett., 13 (2013), 101–105. https://doi.org/10.1016/S0893-9659(04)90019-5 doi: 10.1016/S0893-9659(04)90019-5 |
[12] | R. Jiwari, S. Pandit, R. C. Mittal, A differential quadrature algorithm for the numerical solution of the second-order one dimensional hyperbolic telegraph equation, Int. J. Nonlinear Sci., 13 (2012), 259–266. |
[13] | B. Pekmen, M. T. Sezgin, Differential quadrature solution of hyperbolic telegraph equation, J. Appl. Math., 2012 (2012), 924765. https://doi.org/10.1155/2012/924765 doi: 10.1155/2012/924765 |
[14] | A. Babu, B. Han, N. Asharaf, Numerical solution of the hyperbolic telegraph equation using cubic B-spline based differential quadrature of high accuracy, Comput. Methods Differ. Equ., 10 (2022), 837–859. https://doi.org/10.22034/cmde.2022.47744.1997 doi: 10.22034/cmde.2022.47744.1997 |
[15] | A. S. Alshomrani, S. Pandit, A. K. Alzahrani, M. S. Alghamdi, R. Jiwari, A numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic-type wave equations, Eng. Comput., 34 (2017), 1257–1276. https://doi.org/10.1108/EC-05-2016-0179 doi: 10.1108/EC-05-2016-0179 |
[16] | M. Dehghan, A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 24 (2008), 1080–1093. https://doi.org/10.1002/num.20306 doi: 10.1002/num.20306 |
[17] | M. Dosti, A. Nazemi, Quartic B-spline collocation method for solving one dimensional hyperbolic telegraph equation, J. Inf. Sci. Eng., 7 (2012), 83–90. |
[18] | M. Dosti, A. Nazemi, Septic B-spline collocation method for solving one dimensional hyperbolic telegraph equation, World Acad. Sci. Eng. Technol., 5 (2011), 1192–1196. https://doi.org/10.5281/zenodo.1331893 doi: 10.5281/zenodo.1331893 |
[19] | M. Dosti, A. Nazemi, Solving one-dimensional hyperbolic telegraph equation using cubic B-spline quasi-interpolation, World Acad. Sci. Eng. Technol., 5 (2011), 674–679. https://doi.org/10.5281/zenodo.1331887 doi: 10.5281/zenodo.1331887 |
[20] | R. C. Mittal, R. Bhatia, Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method, Appl. Math. Comput., 220 (2013), 496–506. https://doi.org/10.1016/j.amc.2013.05.081 doi: 10.1016/j.amc.2013.05.081 |
[21] | J. Rashidinia, S. Jamalzadeh, F. Esfahani, Numerical solution of one-dimensional telegraph equation using cubic B-spline collocation method, J. Interpolat. Approx. Sci. Comput., 2014 (2014), 1–8. https://doi.org/10.5899/2014/jiasc-00042 doi: 10.5899/2014/jiasc-00042 |
[22] | T. Nazir, M. Abbas, M. Yaseen, Numerical solution of second-order hyperbolic telegraph equation via new cubic trigonometric B-spline approach, Cogent Math. Stat., 4 (2017), 138206. https://doi.org/10.1080/23311835.2017.1382061 doi: 10.1080/23311835.2017.1382061 |
[23] | S. Sharifi, J. Rashidinia, Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method, Appl. Math. Comput., 281 (2016), 28–38. https://doi.org/10.1016/j.amc.2016.01.049 doi: 10.1016/j.amc.2016.01.049 |
[24] | S. Singh, S. Singh, R. Arora, Numerical solution of second order one-dimensional hyperbolic equation by exponential B-spline collocation method, Numer. Anal. Appl., 7 (2017), 164–176. https://doi.org/10.1134/S1995423917020070 doi: 10.1134/S1995423917020070 |
[25] | S. Singh, A. Aggarwal, Fourth-order cubic B-spline collocation method for hyperbolic telegraph equation, Math. Sci., 16 (2022), 389–400. https://doi.org/10.1007/s40096-021-00428-y doi: 10.1007/s40096-021-00428-y |
[26] | E. Kırlı, D. Irk, M. Z. Gorgulu, Numerical solution of second order linear hyperbolic telegraph equation, TWMS. J. Appl. Eng., 12 (2022), 919–930. |
[27] | C. De Boor, A practical guide to splines, New York: Springer, 1978. |
[28] | D. J. Fyfe, Linear dependence relations connecting equal interval Nth degree splines and their derivatives, J. Inst.Math. Appl., 7 (1971), 398–407. https://doi.org/10.1093/imamat/7.3.398 doi: 10.1093/imamat/7.3.398 |
[29] | R. K. Lodhi, S. F. Aldosary, K. S. Nisar, A. Alsaadi, Numerical solution of non-linear Bratu-type boundary value problems via quintic B-spline collocation method, Math. Sci., 7 (2022), 7257–7273. https://doi.org/10.3934/math.2022405 doi: 10.3934/math.2022405 |
[30] | Y. Zhou, W. Qu, Y. Gu, H. Gao, A hybrid meshless method for the solution of the second order hyperbolic telegraph equation in two space dimensions, Eng. Anal. Bound. Elem., 115 (2020), 21–27. https://doi.org/10.1016/j.enganabound.2020.02.015 doi: 10.1016/j.enganabound.2020.02.015 |
[31] | F. Z. Wang, E. R. Hou, S. A. Salama, M. M. A. Khater, Numerical investigation of the nonlinear fractional Ostrovsky equation, Fractals, 30 (2022), 22401429. https://doi.org/10.1142/S0218348X22401429 doi: 10.1142/S0218348X22401429 |