Research article

Projective class rings of a kind of category of Yetter-Drinfeld modules

  • Received: 13 January 2023 Revised: 14 February 2023 Accepted: 20 February 2023 Published: 08 March 2023
  • MSC : 16D70, 16T05, 16T99

  • In this paper, all simple Yetter-Drinfeld modules and indecomposable projective Yetter-Drinfeld modules over a family of non-pointed $ 8m $-dimension Hopf algebras of tame type with rank two, are construted and classified. The technique is Radford's method of constructing Yetter-Drinfeld modules over a Hopf algebra. Furthermore, the projective class rings of the category of Yetter-Drinfeld modules over this class of Hopf algebras are described explicitly by generators and relations.

    Citation: Yaguo Guo, Shilin Yang. Projective class rings of a kind of category of Yetter-Drinfeld modules[J]. AIMS Mathematics, 2023, 8(5): 10997-11014. doi: 10.3934/math.2023557

    Related Papers:

  • In this paper, all simple Yetter-Drinfeld modules and indecomposable projective Yetter-Drinfeld modules over a family of non-pointed $ 8m $-dimension Hopf algebras of tame type with rank two, are construted and classified. The technique is Radford's method of constructing Yetter-Drinfeld modules over a Hopf algebra. Furthermore, the projective class rings of the category of Yetter-Drinfeld modules over this class of Hopf algebras are described explicitly by generators and relations.



    加载中


    [1] D. N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge, 108 (1990), 261–290. http://doi.org/10.1017/S0305004100069139 doi: 10.1017/S0305004100069139
    [2] C. Kassel, Quantum groups, New York: Springer, 1995. https://doi.org/10.1007/978-1-4612-0783-2
    [3] N. Andruskiewitsch, H. J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order$p^3$, J. Algebra, 209 (1998), 658–691. http://doi.org/10.1006/jabr.1998.7643 doi: 10.1006/jabr.1998.7643
    [4] N. Andruskiewitsch, H. J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math., 154 (2000), 1–45. http://doi.org/10.1006/aima.1999.1880 doi: 10.1006/aima.1999.1880
    [5] N. Andruskiewitsch, H. J. Schneider, Pointed Hopf algebras, In: New Directions in Hopf algebras, Cambridge: Cambridge University Press, 2002, 1–68.
    [6] N. Andruskiewitsch, H. J. Schneider, On the classification of finite dimensional pointed Hopf algebras, Ann. Math., 171 (2010), 375–417. http://doi.org/10.4007/annals.2010.171.375 doi: 10.4007/annals.2010.171.375
    [7] N. Andruskiewitsch, G. Carnovale, G. A. García, Finite dimensional pointed Hopf algebras over finite simple groups of Lie type I. Non-semisimple classes in $PSL_n(q)$, J. Algebra, 442 (2015), 36–65. http://doi.org/10.1016/j.jalgebra.2014.06.019 doi: 10.1016/j.jalgebra.2014.06.019
    [8] G. A. García, J. M. J. Giraldi, On Hopf algebras over quantum subgroups, J. Pure Appl. Algebra, 223 (2019), 738–768. https://doi.org/10.1016/j.jpaa.2018.04.018 doi: 10.1016/j.jpaa.2018.04.018
    [9] N. Hu, R. Xiong, Some Hopf algebras of dimension 72 without the Chevalley property, 2016, arXiv: 1612.04987. http://doi.org/10.48550/arXiv.1612.04987
    [10] Y. X. Shi, Finite dimensional Nichols algebras over Kac-Paljutkin algebra $H_8$, Rev. Unión Mat. Argent., 60 (2019), 265–298. http://doi.org/10.33044/revuma.v60n1a17 doi: 10.33044/revuma.v60n1a17
    [11] R. C. Xiong, On Hopf algebras over the unique $12$-dimensional Hopf algebra without the dual Chevalley property, Commun. Algebra, 47 (2019) 1516–1540. http://doi.org/10.1080/00927872.2018.1508582
    [12] Y. Zheng, Y. Gao, N. H. Hu, Finite dimensional Hopf algebras over the Hopf algebra $H_{b:1}$ of Kashina, J. Algebra, 567 (2021), 613–659. http://doi.org/10.1016/j.jalgebra.2020.09.035 doi: 10.1016/j.jalgebra.2020.09.035
    [13] Y. Zheng, Y. Gao, N. H. Hu, Finite dimensional Hopf algebras over the Hopf algebra $H_{d:-1, 1}$ of Kashina, J. Pure Appl. Algebra, 225 (2021), 106527. https://doi.org/10.1016/j.jpaa.2020.106527 doi: 10.1016/j.jpaa.2020.106527
    [14] D. E. Radford, On oriented quantum algebras derived from representations of the quantum double of a finite dimensional Hopf algebra, J. Algebra, 270 (2003), 670–695. http://doi.org/10.1016/j.jalgebra.2003.07.006 doi: 10.1016/j.jalgebra.2003.07.006
    [15] H. Zhu, H. X. Chen, Yetter-Drinfeld modules over the Hopf-Ore extension of the group algebra of dihedral group, Acta Math. Sin., 28 (2012), 487–502. http://doi.org/10.1007/s10114-011-9777-4 doi: 10.1007/s10114-011-9777-4
    [16] S. L. Yang, Y. F. Zhang, Ore extensions for the Sweedler's Hopf algebra $H_4$, Mathematics, 8 (2020), 1293. http://doi.org/10.3390/math8081293 doi: 10.3390/math8081293
    [17] J. Chen, S. Yang, D. Wang, Y. Xu, On $4n$-dimension neither pointed nor semisimple Hopf algebras and the associated weak Hopf algebras, 2018, arXiv: 1809.00514. http://doi.org/10.48550/arXiv.1809.00514
    [18] R. C. Xiong, Some classification results on finite dimensional Hopf algebras, PhD thesis, East China Normal University, 2019.
    [19] Y. Zhang, The Ore extensions of Hopf algebras and their related topics, PhD thesis, Beijing University of Technology, 2020.
    [20] Y. Guo, S. Yang, The Grothendieck ring of Yetter-Drinfeld modules over a class of $2n^2$-dimension Kac-Paljutkin Hopf algebras, submmited for publication.
    [21] Y. Guo, S. Yang, Representations of a family of $8m$-dimension Hopf algebras of rank two, submmited for publication.
    [22] G. Liu, Basic Hopf algebras of tame type, Algebr. Represent. Theory, 16 (2013), 771–791. https://doi.org/10.1007/s10468-011-9331-1 doi: 10.1007/s10468-011-9331-1
    [23] B. Wald, J. Waschbüsch, Tame biserial algebras, J. Algebra, 95 (1985), 480–500. http://doi.org/10.1016/0021-8693(85)90119-X doi: 10.1016/0021-8693(85)90119-X
    [24] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 1993. http://doi.org/10.1090/cbms/082
    [25] M. Auslander, I. Reiten, S. O. Smalø, Representation theory of Artin algebras, Cambridge: Cambridge University Press, 1995. http://doi.org/10.1017/CBO9780511623608
    [26] M. Lorenz, Representations of finite dimensional Hopf algebra, J. Algebra, 188 (1997), 476–505. https://doi.org/10.1006/jabr.1996.6827 doi: 10.1006/jabr.1996.6827
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1267) PDF downloads(67) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog