In this paper, all simple Yetter-Drinfeld modules and indecomposable projective Yetter-Drinfeld modules over a family of non-pointed $ 8m $-dimension Hopf algebras of tame type with rank two, are construted and classified. The technique is Radford's method of constructing Yetter-Drinfeld modules over a Hopf algebra. Furthermore, the projective class rings of the category of Yetter-Drinfeld modules over this class of Hopf algebras are described explicitly by generators and relations.
Citation: Yaguo Guo, Shilin Yang. Projective class rings of a kind of category of Yetter-Drinfeld modules[J]. AIMS Mathematics, 2023, 8(5): 10997-11014. doi: 10.3934/math.2023557
In this paper, all simple Yetter-Drinfeld modules and indecomposable projective Yetter-Drinfeld modules over a family of non-pointed $ 8m $-dimension Hopf algebras of tame type with rank two, are construted and classified. The technique is Radford's method of constructing Yetter-Drinfeld modules over a Hopf algebra. Furthermore, the projective class rings of the category of Yetter-Drinfeld modules over this class of Hopf algebras are described explicitly by generators and relations.
[1] | D. N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge, 108 (1990), 261–290. http://doi.org/10.1017/S0305004100069139 doi: 10.1017/S0305004100069139 |
[2] | C. Kassel, Quantum groups, New York: Springer, 1995. https://doi.org/10.1007/978-1-4612-0783-2 |
[3] | N. Andruskiewitsch, H. J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order$p^3$, J. Algebra, 209 (1998), 658–691. http://doi.org/10.1006/jabr.1998.7643 doi: 10.1006/jabr.1998.7643 |
[4] | N. Andruskiewitsch, H. J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math., 154 (2000), 1–45. http://doi.org/10.1006/aima.1999.1880 doi: 10.1006/aima.1999.1880 |
[5] | N. Andruskiewitsch, H. J. Schneider, Pointed Hopf algebras, In: New Directions in Hopf algebras, Cambridge: Cambridge University Press, 2002, 1–68. |
[6] | N. Andruskiewitsch, H. J. Schneider, On the classification of finite dimensional pointed Hopf algebras, Ann. Math., 171 (2010), 375–417. http://doi.org/10.4007/annals.2010.171.375 doi: 10.4007/annals.2010.171.375 |
[7] | N. Andruskiewitsch, G. Carnovale, G. A. García, Finite dimensional pointed Hopf algebras over finite simple groups of Lie type I. Non-semisimple classes in $PSL_n(q)$, J. Algebra, 442 (2015), 36–65. http://doi.org/10.1016/j.jalgebra.2014.06.019 doi: 10.1016/j.jalgebra.2014.06.019 |
[8] | G. A. García, J. M. J. Giraldi, On Hopf algebras over quantum subgroups, J. Pure Appl. Algebra, 223 (2019), 738–768. https://doi.org/10.1016/j.jpaa.2018.04.018 doi: 10.1016/j.jpaa.2018.04.018 |
[9] | N. Hu, R. Xiong, Some Hopf algebras of dimension 72 without the Chevalley property, 2016, arXiv: 1612.04987. http://doi.org/10.48550/arXiv.1612.04987 |
[10] | Y. X. Shi, Finite dimensional Nichols algebras over Kac-Paljutkin algebra $H_8$, Rev. Unión Mat. Argent., 60 (2019), 265–298. http://doi.org/10.33044/revuma.v60n1a17 doi: 10.33044/revuma.v60n1a17 |
[11] | R. C. Xiong, On Hopf algebras over the unique $12$-dimensional Hopf algebra without the dual Chevalley property, Commun. Algebra, 47 (2019) 1516–1540. http://doi.org/10.1080/00927872.2018.1508582 |
[12] | Y. Zheng, Y. Gao, N. H. Hu, Finite dimensional Hopf algebras over the Hopf algebra $H_{b:1}$ of Kashina, J. Algebra, 567 (2021), 613–659. http://doi.org/10.1016/j.jalgebra.2020.09.035 doi: 10.1016/j.jalgebra.2020.09.035 |
[13] | Y. Zheng, Y. Gao, N. H. Hu, Finite dimensional Hopf algebras over the Hopf algebra $H_{d:-1, 1}$ of Kashina, J. Pure Appl. Algebra, 225 (2021), 106527. https://doi.org/10.1016/j.jpaa.2020.106527 doi: 10.1016/j.jpaa.2020.106527 |
[14] | D. E. Radford, On oriented quantum algebras derived from representations of the quantum double of a finite dimensional Hopf algebra, J. Algebra, 270 (2003), 670–695. http://doi.org/10.1016/j.jalgebra.2003.07.006 doi: 10.1016/j.jalgebra.2003.07.006 |
[15] | H. Zhu, H. X. Chen, Yetter-Drinfeld modules over the Hopf-Ore extension of the group algebra of dihedral group, Acta Math. Sin., 28 (2012), 487–502. http://doi.org/10.1007/s10114-011-9777-4 doi: 10.1007/s10114-011-9777-4 |
[16] | S. L. Yang, Y. F. Zhang, Ore extensions for the Sweedler's Hopf algebra $H_4$, Mathematics, 8 (2020), 1293. http://doi.org/10.3390/math8081293 doi: 10.3390/math8081293 |
[17] | J. Chen, S. Yang, D. Wang, Y. Xu, On $4n$-dimension neither pointed nor semisimple Hopf algebras and the associated weak Hopf algebras, 2018, arXiv: 1809.00514. http://doi.org/10.48550/arXiv.1809.00514 |
[18] | R. C. Xiong, Some classification results on finite dimensional Hopf algebras, PhD thesis, East China Normal University, 2019. |
[19] | Y. Zhang, The Ore extensions of Hopf algebras and their related topics, PhD thesis, Beijing University of Technology, 2020. |
[20] | Y. Guo, S. Yang, The Grothendieck ring of Yetter-Drinfeld modules over a class of $2n^2$-dimension Kac-Paljutkin Hopf algebras, submmited for publication. |
[21] | Y. Guo, S. Yang, Representations of a family of $8m$-dimension Hopf algebras of rank two, submmited for publication. |
[22] | G. Liu, Basic Hopf algebras of tame type, Algebr. Represent. Theory, 16 (2013), 771–791. https://doi.org/10.1007/s10468-011-9331-1 doi: 10.1007/s10468-011-9331-1 |
[23] | B. Wald, J. Waschbüsch, Tame biserial algebras, J. Algebra, 95 (1985), 480–500. http://doi.org/10.1016/0021-8693(85)90119-X doi: 10.1016/0021-8693(85)90119-X |
[24] | S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 1993. http://doi.org/10.1090/cbms/082 |
[25] | M. Auslander, I. Reiten, S. O. Smalø, Representation theory of Artin algebras, Cambridge: Cambridge University Press, 1995. http://doi.org/10.1017/CBO9780511623608 |
[26] | M. Lorenz, Representations of finite dimensional Hopf algebra, J. Algebra, 188 (1997), 476–505. https://doi.org/10.1006/jabr.1996.6827 doi: 10.1006/jabr.1996.6827 |