The goal of this work is to study the existence of a unique solution and the Ulam-Hyers stability of a coupled system of generalized hybrid pantograph equations with fractional deformable derivatives. Our main tool is Banach's contraction principle. The paper ends with an example to support our results.
Citation: Souad Ayadi, Ozgur Ege, Manuel De la Sen. On a coupled system of generalized hybrid pantograph equations involving fractional deformable derivatives[J]. AIMS Mathematics, 2023, 8(5): 10978-10996. doi: 10.3934/math.2023556
The goal of this work is to study the existence of a unique solution and the Ulam-Hyers stability of a coupled system of generalized hybrid pantograph equations with fractional deformable derivatives. Our main tool is Banach's contraction principle. The paper ends with an example to support our results.
[1] | I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, 1999. |
[2] | I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367–386. |
[3] | C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etamed, S. Rezapour, On the qualitative analysis of the fractional boundary value problem describing thermostat control model via $\psi$-Hilfer fractional operator, Adv. Difference Equ., 2021 (2021), 201. https://doi.org/10.1186/s13662-021-03359-z doi: 10.1186/s13662-021-03359-z |
[4] | G. M. Selvam, J. Alzabut, D. Vignesh, J. M. Jonnalagadda, K. Abodayeh, Existence and stability of nonlinear discrete fractional initial value problems with application to vibrating eardrum, Math. Biosci. Eng., 18 (2021), 3907–3921. https://doi.org/10.3934/mbe.2021195 doi: 10.3934/mbe.2021195 |
[5] | R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[6] | C. V. da J. Sousa, E. C. de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, Int. J. Anal. Appl., 16 (2018), 83–96. https://doi.org/10.28924/2291-8639-16-2018-83 doi: 10.28924/2291-8639-16-2018-83 |
[7] | P. Ahuja, F. Zulfeqarr, A. Ujlayan, Deformable fractional derivative and its applications, AIP Conf. Proc., 1897 (2017), 020008. https://doi.org/10.1063/1.5008687 doi: 10.1063/1.5008687 |
[8] | F. Zulfeqarr, A. Ujlayan, P. Ahuja, A new fractional derivative and its fractional integral with some applications, arXiv, 2017. https://doi.org/10.48550/arXiv.1705.00962 |
[9] | M. Etefa, G. M. N'Guèrèkata, M. Benchohra, Existence and uniqueness of solutions to impulsive fractional differential equations via the deformable derivative, Appl. Anal., 2021. https://doi.org/10.1080/00036811.2021.1979224 |
[10] | M. Mebrat, G. M. N'Guèrèkata, A Cauchy problem for some fractional differential equation via deformable derivatives, J. Nonlinear Evol. Equ. Appl., 4 (2020), 1–9. |
[11] | J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078 |
[12] | W. G. Ajello, H. I. Freedman, J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52 (1992), 855–869. https://doi.org/10.1137/0152048 doi: 10.1137/0152048 |
[13] | M. Buhmann, A. Iserles, Stability of the discretized pantograph differential equation, Math. Comput., 60 (1993), 575–589. https://doi.org/10.1090/S0025-5718-1993-1176707-2 doi: 10.1090/S0025-5718-1993-1176707-2 |
[14] | L. Fox, D. F. Mayers, J. A. Ockendon, A. B. Tayler, On a functional differential equation, IMA J. Appl. Math., 8 (1971), 271–307. https://doi.org/10.1093/imamat/8.3.271 doi: 10.1093/imamat/8.3.271 |
[15] | C. M. Pappalardo, M. C. De Simone, D. Guida, Multibody modeling and nonlinear control of the pantograph/catenary system, Arch. Appl. Mech., 89 (2019), 1589–1626. https://doi.org/10.1007/s00419-019-01530-3 doi: 10.1007/s00419-019-01530-3 |
[16] | L. Bogachev, G. Derfel, S. Molchanov, J. Ochendon, On bounded solutions of the balanced generalized pantograph equation, In: Topics in Stochastic Analysis and Nonparametric Estimation, New York: Springer, 145 (2008), 29–49. https://doi.org/10.1007/978-0-387-75111-5_3 |
[17] | D. Li, M. Z. Liu, Runge-Kutta methods for the multi-pantograph delay equation, Appl. Math. Comput., 163 (2005), 383–395. https://doi.org/10.1016/j.amc.2004.02.013 doi: 10.1016/j.amc.2004.02.013 |
[18] | M. Z. Liu, D. Li, Properties of analytic solution and numerical solution of multi-pantograph equation, Appl. Math. Comput., 155 (2004), 853–871. https://doi.org/10.1016/j.amc.2003.07.017 doi: 10.1016/j.amc.2003.07.017 |
[19] | A. Iserles, On the generalized pantograph functional differential equation, European J. Appl. Math., 4 (1993), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966 |
[20] | K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6 |
[21] | Y. Yang, Y. Huang, Spectral-collocation methods for fractional pantograph delay-integro differential equations, Adv. Math. Phys., 2013 (2013), 821327. https://doi.org/10.1155/2013/821327 doi: 10.1155/2013/821327 |
[22] | E. Yusufoglu, An efficient algorithm for solving generalized pantograph equations with linear functional argument, Appl. Math. Comput., 217 (2010), 3591–3595. https://doi.org/10.1016/j.amc.2010.09.005 doi: 10.1016/j.amc.2010.09.005 |
[23] | A. Wongcharoen, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer type pantograph fractional differential equations and inclusions, Adv. Differ. Equ., 2020 (2020), 279. https://doi.org/10.1186/s13662-020-02747-1 doi: 10.1186/s13662-020-02747-1 |
[24] | M. A. Darwish, K. Sadarangani, Existence of solutions for hybrid fractional pantograph equations, Appl. Anal. Discrete Math., 9 (2015), 150–167. https://doi.org/10.2298/AADM150126002D doi: 10.2298/AADM150126002D |
[25] | J. Alzabut, A. G. M. Selvam, R. A. El-Nabulsi, D. Vignesh, M. E. Samei, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions, Symmetry, 13 (2021), 473. https://doi.org/10.3390/sym13030473 doi: 10.3390/sym13030473 |
[26] | E. T. Karimov, B. Lopez, K. Sadarangani, About the existence of solutions for a hybrid nonlinear generalized fractional pantograph equation, Fract. Differ. Calc., 6 (2016), 95–110. https://doi.org/10.7153/fdc-06-06 doi: 10.7153/fdc-06-06 |
[27] | S. Harikrishnan, K. Shah, K. Kanagarajan, Existence theory of fractional coupled diferential equation via $\psi$-Hilfer fractional derivative, Random Oper. Stoch. Equ., 27 (2019), 207–212. https://doi.org/10.1515/rose-2019-2018 doi: 10.1515/rose-2019-2018 |
[28] | I. Ahmad, J. J. Nieto, Gh. U. Rahman, K. Shah, Existence and stability for fractional order pantograph equations with nonlocal conditions, Electron. J. Differ. Eq., 2020 (2020). |
[29] | R. George, M. Houas, M. Ghaderi, S. Rezapour, S. K. Elagan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities, Results Phys., 39 (2022), 105687. https://doi.org/10.1016/j.rinp.2022.105687 doi: 10.1016/j.rinp.2022.105687 |
[30] | N. Singh, Application of fixed point theorems to solution of operator equations in Banach spaces, 3C TIC, 11 (2022), 72–79. https://doi.org/10.17993/3ctic.2022.112.72-79 doi: 10.17993/3ctic.2022.112.72-79 |
[31] | J. Sebastian, S. Pulickakunnel, Fixed point theorems for Suzuki nonexpansive mappings in Banach spaces, 3C TIC, 11 (2022), 15–24. https://doi.org/10.17993/3ctic.2022.112.15-24 doi: 10.17993/3ctic.2022.112.15-24 |
[32] | Z. Ali, A. Zada, K. Shah, On Ulam's stability for a coupled systems of nonlinear implicit fractional differential equations, Bull. Malays. Math. Sci. Soc., 42 (2018), 2681–2699. https://doi.org/10.1007/s40840-018-0625-x doi: 10.1007/s40840-018-0625-x |
[33] | K. Shah, C. Tunc, Existence theory and stability analysis to a system of boundary value problem, J. Taibah Univ. Sci., 11 (2017), 1330–1342. https://doi.org/10.1016/j.jtusci.2017.06.002 doi: 10.1016/j.jtusci.2017.06.002 |
[34] | J. Wang, L. Lv, W. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63 (2011), 1–10. https://doi.org/10.14232/ejqtde.2011.1.63 doi: 10.14232/ejqtde.2011.1.63 |
[35] | J. Wang, K. Shah, A. Ali, Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution evolution equations, Math. Meth. Appl. Sci., 41 (2018), 2392–2402. https://doi.org/10.1002/mma.4748 doi: 10.1002/mma.4748 |
[36] | J. V. da C. Sousa, E. C. de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. https://doi.org/10.1016/j.aml.2018.01.016 doi: 10.1016/j.aml.2018.01.016 |
[37] | M. H. Derakhshan, Existence, uniqueness, Ulam-Hyers stability and numerical simulationof solutions for variable order fractional differential equations in fluid mechanics, J. Appl. Math. Comput., 68 (2022), 403–429. https://doi.org/10.1007/s12190-021-01537-6 doi: 10.1007/s12190-021-01537-6 |
[38] | O. Kahouli, A. B. Makhlouf, L. Mchiri, H. Rguigui, Hyers-Ulam stability for a class of Hadamard fractional Itô-doob stochastic integral equations, Chaos Soliton Fract., 166 (2023), 112918. https://doi.org/10.1016/j.chaos.2022.112918 doi: 10.1016/j.chaos.2022.112918 |
[39] | A. Zada, S. Fatima, Z. Ali, J. Xu, Y. Cui, Stability results for a coupled system of impulsive fractional differential equations, Mathematics, 7 (2019), 927. https://doi.org/10.3390/math7100927 doi: 10.3390/math7100927 |
[40] | A. M. Mathai, H. J. Haubold, An Introduction to Fractional Calculus, Mathematics Research Developments, New York: Nova Science Publishers, 2017. |