Research article

Some algebraic invariants of the edge ideals of perfect $ [h, d] $-ary trees and some unicyclic graphs

  • Received: 05 October 2022 Revised: 13 February 2023 Accepted: 20 February 2023 Published: 07 March 2023
  • MSC : 05C38, 05E99, 13C15, 13F20

  • This article is mainly concerned with computations of some algebraic invariants of quotient rings of edge ideals of perfect $ [h, d] $-ary trees and unicyclic graphs. We compute exact values of depth and Stanley depth and consequently projective dimension for above mentioned quotient rings, except for the one special case of unicyclic graph for which best possible bounds of Stanley depth are given.

    Citation: Tazeen Ayesha, Muhammad Ishaq. Some algebraic invariants of the edge ideals of perfect $ [h, d] $-ary trees and some unicyclic graphs[J]. AIMS Mathematics, 2023, 8(5): 10947-10977. doi: 10.3934/math.2023555

    Related Papers:

  • This article is mainly concerned with computations of some algebraic invariants of quotient rings of edge ideals of perfect $ [h, d] $-ary trees and unicyclic graphs. We compute exact values of depth and Stanley depth and consequently projective dimension for above mentioned quotient rings, except for the one special case of unicyclic graph for which best possible bounds of Stanley depth are given.



    加载中


    [1] M. R. Pournaki, S. S. Fakhari, M. Tousi, S. Yassemi, Stanley depth, Not. Am. Math. Soc., 56 (2009), 1106–1108. https://doi.org/10.3390/math7070607
    [2] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math., 68 (1982), 175–193. https://doi.org/10.1007/BF01394054 doi: 10.1007/BF01394054
    [3] B. Ichim, L. Katthän, J. J. Moyano-Fernández, How to compute the Stanley depth of a module, Math. Comp., 86 (2017), 455–472.
    [4] B. Ichim, L. Katthän, J. J. Moyano-Fernández, The behavior of Stanley depth under polarization, J. Comb. Theory Ser. A., 135 (2015), 332–347. https://doi.org/10.1016/j.jcta.2015.05.005 doi: 10.1016/j.jcta.2015.05.005
    [5] A. Haider, S. Khan, Stanley's conjecture for critical ideals, Stud. Sci. Math. Hung., 48 (2011), 220–226. https://doi.org/10.1556/sscmath.2010.1160 doi: 10.1556/sscmath.2010.1160
    [6] D. Popescu, An inequality between depth and Stanley depth, Bull. Math. Soc. Sci. Math., 52 (2009), 377–382.
    [7] D. Popescu, M. I. Qureshi, Computing the Stanley depth, J. Algebra, 323 (2010), 2943–2959. https://doi.org/10.1016/j.jalgebra.2009.11.025 doi: 10.1016/j.jalgebra.2009.11.025
    [8] A. M. Duval, Algebraic shifting and sequentially Cohen-Macaulay simplicial complexes, Electron. J. Comb., 3 (1996), R21. https://doi.org/10.37236/1245 doi: 10.37236/1245
    [9] M. Ishaq, Upper bounds for the Stanley depth, Commun. Algebra, 40 (2018), 87–97. https://doi.org/10.1080/00927872.2010.523642 doi: 10.1080/00927872.2010.523642
    [10] W. Bruns, C. Krattenthaler, J. Uliczka, Stanley decompositions and Hilbert depth in the koszul complex, J. Commut. Algebra, 2 (2010), 327–357. https://doi.org/10.1216/JCA-2010-2-3-327 doi: 10.1216/JCA-2010-2-3-327
    [11] L. Katthän, R. Sieg, The Stanley depth in the upper half of the koszul complex, Commun. Algebra, 8 (2016), 3290–3300. https://doi.org/10.1080/00927872.2015.1085993 doi: 10.1080/00927872.2015.1085993
    [12] A. Popescu, Special Stanley decompositions, Bull. Math. Soc. Sci. Math., 53 (2010), 363–372.
    [13] Z. Iqbal, M. Ishaq, M. Aamir, Depth and Stanley depth of the edge ideals of square paths and square cycles, Commun. Algebra, 46 (2018), 1188–1198. https://doi.org/10.1080/00927872.2017.1339068 doi: 10.1080/00927872.2017.1339068
    [14] Z. Iqbal, M. Ishaq, M. A. Binyamin, Depth and Stanley depth of the edge ideals of the strong product of some graphs, Hacet. J. Math. Stat., 50 (2021), 92–109. https://doi.org/10.15672/hujms.638033 doi: 10.15672/hujms.638033
    [15] J. B. Liu, M. Munir, R. Farooki, M. I. Qureshi, Q. Muneer, Stanley depth of edge ideals of some wheel-related graphs, Mathematics, 7 (2019), 202–202. https://doi.org/10.3390/math7020202 doi: 10.3390/math7020202
    [16] B. Shaukat, A. U. Haq, M. Ishaq, Some algebraic invariants of the residue class rings of the edge ideals of perfect semiregular trees, Commun. Algebra, https://doi.org/10.1080/00927872.2022.2159968
    [17] S. Morey, Depths of powers of the edge ideal of a tree, Commun. Algebra., 38 (2010), 4042–4055. https://doi.org/10.1080/00927870903286900 doi: 10.1080/00927870903286900
    [18] A. Stefan, Stanley depth of powers of the path ideal, 2014. https://doi.org/10.48550/arXiv.1409.6072
    [19] M. Cimpoeas, On the Stanley depth of edge ideals of line and cyclic graphs, Rom. J. Math. Comput. Sci., 5 (2015), 70–75.
    [20] A. Alipour, A. Tehranian, Depth and Stanley depth of edge ideals of star graphs, Int. J. Appl. Math. Stat., 56 (2017), 63–69.
    [21] A. Iqbal, M. Ishaq, Depth and Stanley depth of the quotient rings of edge ideals of some lobster trees and unicyclic graphs, Turk. J. Math., 46 (2022), 1886–1896. https://doi.org/10.55730/1300-0098.3239 doi: 10.55730/1300-0098.3239
    [22] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1998.
    [23] A. Rauf, Depth and Stanley depth of multigraded modules, Commun. Algebra, 38 (2010), 773–784. https://doi.org/10.1080/00927870902829056 doi: 10.1080/00927870902829056
    [24] M. Cimpoeas, Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci., 2 (2012), 28–40.
    [25] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151–3169. https://doi.org/10.1016/j.jalgebra.2008.01.006 doi: 10.1016/j.jalgebra.2008.01.006
    [26] N. U. Din, M. Ishaq, Z. Sajid, Values and bounds for depth and Stanley depth of some classes of edge ideals, AIMS Mathematics, 6 (2021), 8544–8566. https://doi.org/10.3934/math.2021496 doi: 10.3934/math.2021496
    [27] B. Shaukat, M. Ishaq, A. U. Haq, Z. Iqbal, On some algebraic invariants and Cohen-Macauly graphs, 2022. https://doi.org/10.48550/arXiv.2211.05721
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1242) PDF downloads(94) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog