In optimization, convex and non-convex functions play an important role. Further, there is no doubt that convexity and stochastic processes are closely related. In this study, we introduce the notion of the $ h- $convex stochastic process for center-radius order in the setting of interval-valued functions ($ \mathcal{IVFS} $) which is novel in literature. By using these notions we establish Jensen, Ostrowski, and Hermite-Hadamard ($ \mathcal{H.H} $) types inequalities for generalized interval-valued $ \mathcal{CR}-h $-convex stochastic processes. Furthermore, the study provides useful examples to support its findings.
Citation: Mujahid Abbas, Waqar Afzal, Thongchai Botmart, Ahmed M. Galal. Jensen, Ostrowski and Hermite-Hadamard type inequalities for $ h $-convex stochastic processes by means of center-radius order relation[J]. AIMS Mathematics, 2023, 8(7): 16013-16030. doi: 10.3934/math.2023817
In optimization, convex and non-convex functions play an important role. Further, there is no doubt that convexity and stochastic processes are closely related. In this study, we introduce the notion of the $ h- $convex stochastic process for center-radius order in the setting of interval-valued functions ($ \mathcal{IVFS} $) which is novel in literature. By using these notions we establish Jensen, Ostrowski, and Hermite-Hadamard ($ \mathcal{H.H} $) types inequalities for generalized interval-valued $ \mathcal{CR}-h $-convex stochastic processes. Furthermore, the study provides useful examples to support its findings.
[1] | R. E. Moore, Interval analysis, Englewood Cliffs, Prentice-Hall, 1966. |
[2] | J. M. Snyder, Interval analysis for computer graphics, Proceedings of the 19th annual conference on computer graphics and interactive techniques, 1992,121–130. |
[3] | N. A. Gasilov, Ş. E. Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Comput., 22 (2018), 3817–3828. |
[4] | D. Singh, B. A. Dar, Sufficiency and duality in non-smooth interval valued programming problems, J. Ind. Manag. Optim., 15 (2019), 647–665. https://doi.org/10.3934/jimo.2018063 doi: 10.3934/jimo.2018063 |
[5] | E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE T. Neural Networ., 20 (2009), 638–653. http://doi.org/10.1109/TNN.2008.2011267 doi: 10.1109/TNN.2008.2011267 |
[6] | A. Almutairi, A. Kılıçman, New refinements of the Hadamard inequality on coordinated convex function, J. Inequal. Appl., 2019 (2019), 192. https://doi.org/10.1186/s13660-019-2143-2 doi: 10.1186/s13660-019-2143-2 |
[7] | H. Budak, T. Tunç, M. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, P. Am. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741 |
[8] | S. Rashid, H. Kalsoom, Z. Hammouch, R. Ashraf, New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating $h$-convex functions in Hilbert space, Symmetry, 12 (2020), 222. https://doi.org/10.3390/sym12020222 doi: 10.3390/sym12020222 |
[9] | X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions, J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324 |
[10] | B. Feng, M. Ghafoor, Y. M. Chu, M. I. Qureshi, X. Feng, Hermite-Hadamard and Jensen's type inequalities for modified $(p, h)$-convex functions, AIMS Math., 6 (2029), 6959–6971. https://doi.org/10.3934/math.2020446 doi: 10.3934/math.2020446 |
[11] | C. Park, Y. M. Chu, M. S. Saleem, Hermite-Hadamard-type inequalities for $\eta_h$-convex functions via $\Psi$-Riemann-Liouville fractional integrals, Adv. Cont. Disc. Model., 1 (2022), 1–8. https://doi.org/10.1186/s13662-022-03745-1 doi: 10.1186/s13662-022-03745-1 |
[12] | P. Y. Yan, Q. Li, Y. M. Chu, S. Mukhtar, S. Waheed, On some fractional integral inequalities for generalized strongly modified $h$-convex function, AIMS Math., 5 (2020), 6620–6638. https://doi.org/10.3934/math.2020426 doi: 10.3934/math.2020426 |
[13] | M. A. Ali, H. Budak, G. Murtaza, Y. M. Chu, Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions, J. Inequal. Appl., 1 (2021), 1–18. https://doi.org/10.1186/s13660-021-02619-6 doi: 10.1186/s13660-021-02619-6 |
[14] | H. Kara, M. A. Ali, H. Budak, Hermite-Hadamard-Mercer type inclusions for interval-valued functions via Riemann-Liouville fractional integrals, Turk. J. Math., 6 (2022), 2193–2207. https://doi.org/10.55730/1300-0098.3263 doi: 10.55730/1300-0098.3263 |
[15] | W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $(h_1, h_2)$-Godunova-Levin functions, AIMS Math., 7 (2022), 19372–19387. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064 |
[16] | W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical $(h_1, h_2)$-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970 |
[17] | I. A. Baloch, Y. M. Chu, Petrovic-type inequalities for harmonic-convex functions, J. Funct. Space., 2020 (2020), 3075390. https://doi.org/10.1155/2020/3075390 doi: 10.1155/2020/3075390 |
[18] | E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions, Adv. Differ. Equ., 1 (2020), 1–17. https://doi.org/10.1186/s13662-020-02977-3 doi: 10.1186/s13662-020-02977-3 |
[19] | H. Kara, H. Budak, M. A. Ali, Weighted Hermite-Hadamard type inclusions for products of co-ordinated convex interval-valued functions, Adv. Differ. Equ., 1 (2021), 1–16. https://doi.org/10.1186/s13662-021-03261-8 doi: 10.1186/s13662-021-03261-8 |
[20] | T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, New Hermite-Hadamard-type inequalities for-convex fuzzy-interval-valued functions, Adv. Differ. Equ., 1 (2021), 1–20. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y |
[21] | M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 1 (2020), 1–17. https://doi.org/10.1186/s13662-021-03245-8 doi: 10.1186/s13662-021-03245-8 |
[22] | G. Sana, M. B. Khan, M. A. Noor, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001 |
[23] | M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 1 (2021), 1401–1418. https://dx.doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001 |
[24] | T. Saeed, W. Afzal, K. Shabbir, S. Treanţă, M. D. Sen, Some novel estimates of Hermite-Hadamard and Jensen type inequalities for $(h_1, h_2)$-convex functions pertaining to total order relation, Mathematics, 10 (2022), 4777. https://doi.org/10.3390/math10244777 doi: 10.3390/math10244777 |
[25] | T. Saeed, W. Afzal, M. Abbas, S. Treanţă, M. D. Sen, Some new generalizations of integral inequalities for harmonical $cr$-$(h_1, h_2)$-Godunova Levin functions and applications, Mathematics, 10 (2022), 4540. https://doi.org/10.3390/math10234540 doi: 10.3390/math10234540 |
[26] | V. Stojiljkovic, Hermite Hadamard type inequalities involving $(kp)$ fractional operator with ($\alpha$, h- m)- p convexity, Eur. J. Pure. Appl. Math., 16 (2023), 503–522. https://doi.org/10.29020/nybg.ejpam.v16i1.4689 doi: 10.29020/nybg.ejpam.v16i1.4689 |
[27] | V. Stojiljkovic, A new conformable fractional derivative and applications, Seleccion. Mat., 9 (2022), 370–380. http://dx.doi.org/10.17268/sel.mat.2022.02.12 doi: 10.17268/sel.mat.2022.02.12 |
[28] | G. Mani, R. Ramaswamy, A. J. Gnanaprakasam, V. Stojiljkovic, Z. M. Fadail, S. Radenovic, Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space, AIMS Math., 8 (2023), 3269–3285. http://dx.doi.org/2010.3934/math.2023168 |
[29] | V. Stojiljković, R. Ramaswamy, O. A. A. Abdelnaby, S. Radenovic, Riemann-Liouville fractional inclusions for convex functions using interval valued setting, Mathematics, 10 (2022), 3491. https://doi.org/10.3390/math10193491 doi: 10.3390/math10193491 |
[30] | W. Afzal, K. Shabbir, S. Treanţă, K. Nonlaopon, Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions, AIMS Math., 8 (2022), 3303–3321. https://doi.org/10.3934/math.2023170 doi: 10.3934/math.2023170 |
[31] | K. Nikodem, On convex stochastic processes, Aequationes Math., 2 (1998), 427–446. https://dx.doi.org/10.1007/BF02190513 doi: 10.1007/BF02190513 |
[32] | M. Shaked, J. G. Shanthikumar, Stochastic convexity and its applications, Adv. Appl. Probab., 1 (1980), 184–197. https://dx.doi.org/10.1006ADA170112 |
[33] | A. Skowronski, On some properties of $j$-convex stochastic processes, Aequationes Math., 2 (1992), 249–258. https://dx.doi.org/10.1007/BF01830983 doi: 10.1007/BF01830983 |
[34] | D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143–151. https://dx.doi.org/10.1007/s00010-011-0090-1 doi: 10.1007/s00010-011-0090-1 |
[35] | S. Varoşanec, On $h-$convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://dx.doi.org/10.1016/j.jmaa.2006.02.086 |
[36] | D. Barraez, L. Gonzalez, N. Merentes, On $h$-convex stochastic processes, Math. Aeterna, 5 (2015), 571–581. |
[37] | J. El-Achky, S. Taoufiki, On $(p-h)$-convex stochastic processes, J. Interdiscip. Math., 2 (2022), 1–12. https://doi.org/10.1080/09720502.2021.1938994 doi: 10.1080/09720502.2021.1938994 |
[38] | W. Afzal, T. Botmart, Some novel estimates of Jensen and Hermite-Hadamard inequalities for $h$-Godunova-Levin stochastic processes, AIMS Math., 8 (2023), 7277–7291. https://doi.org/10.3934/math.2023366 doi: 10.3934/math.2023366 |
[39] | M. Vivas-Cortez, M. S. Saleem, S. Sajid, Fractional version of Hermite-Hadamard-Mercer inequalities for convex stochastic processes via $\Psi_k$-Riemann-Liouville fractional integrals and its applications, Appl. Math., 16 (2022), 695–709. http://dx.doi.org/10.18576/amis/22nuevoformat20(1)2 doi: 10.18576/amis/22nuevoformat20(1)2 |
[40] | W. Afzal, E. Y. Prosviryakov, S. M. El-Deeb, Y. Almalki, Some new estimates of HermiteHadamard, Ostrowski and Jensen-type inclusions for $h$-convex stochastic process via interval-valued functions, Symmetry., 15 (2023), 831. https://doi.org/10.3390/sym15040831 doi: 10.3390/sym15040831 |
[41] | J. El-Achky, D. Gretete, M. Barmaki, Inequalities of Hermite-Hadamard type for stochastic process whose fourth derivatives absolute are quasi-convex, $P$-convex, $s$-convex and $h$-convex, J. Interdiscip. Math., 3 (2021), 1–17. https://doi.org/10.1080/09720502.2021.1887607 doi: 10.1080/09720502.2021.1887607 |
[42] | N. Sharma, R. Mishra, A. Hamdi, Hermite-Hadamard type integral inequalities for multidimensional general $h$-harmonic preinvex stochastic processes, Commun. Stat.-Theor. M., 4 (2020), 1–41. https://doi.org/10.1080/03610926.2020.1865403 doi: 10.1080/03610926.2020.1865403 |
[43] | H. Zhou, M. S. Saleem, M. Ghafoor, J. Li, Generalization of-convex stochastic processes and some classical inequalities, Math. Probl. Eng., 2020 (2020), 1583807. https://doi.org/10.1155/2020/1583807 doi: 10.1155/2020/1583807 |
[44] | W. Afzal, S. M. Eldin, W. Nazeer, A. M. Galal, Some integral inequalities for harmonical $cr$-$h$-Godunova-Levin stochastic processes, AIMS Math., 8 (2023), 13473–13491. https://doi.org/10.3934/math.2023683 doi: 10.3934/math.2023683 |
[45] | H. Budak, M. Z. Sarikaya, On generalized stochastic fractional integrals and related inequalities, Theor. Appl., 5 (2018), 471–481. https://doi.org/10.15559/18-VMSTA117 doi: 10.15559/18-VMSTA117 |
[46] | M. Tunc, Ostrowski-type inequalities via h-convex functions with applications to special means, J. Inequal. Appl., 1 (2013), 1–10. https://doi.org/10.1186/1029-242X-2013-326 doi: 10.1186/1029-242X-2013-326 |
[47] | L. Gonzales, J. Materano, M. V. Lopez, Ostrowski-type inequalities via h-convex stochastic processes, JP J. Math. Sci., 6 (2013), 15–29. |
[48] | A. K. Bhunia, S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178. https://doi.org/10.3390/math10122089 doi: 10.3390/math10122089 |
[49] | W. Liu, F. Shi, G. Ye, D. Zhao, The properties of harmonically $cr$-$h$-convex function and its applications, Mathematics, 10 (2022), 2089. https://doi.org/10.1016/j.cie.2014.05.014 doi: 10.1016/j.cie.2014.05.014 |
[50] | W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some H-Godunova-Levin unction inequalities using center radius (Cr) order, Fractal Fract., 6 (2022), 518. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518 |
[51] | W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Math., 8 (2023), 1696–1712. https://doi.org/10.3934/math.2023087 doi: 10.3934/math.2023087 |
[52] | W. Afzal, K. Shabbir, T. Botmart, S. Treanţă, Some new estimates of well known inequalities for $(h_1, h_2)$-Godunova-Levin functions by means of center-radius order relation, AIMS Math., 8 (2022), 3101–3119. https://doi.org/10.3934/math.2023160 doi: 10.3934/math.2023160 |
[53] | P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518 |