Loading [MathJax]/jax/output/SVG/jax.js
Research article

An efficient high order numerical scheme for the time-fractional diffusion equation with uniform accuracy

  • Received: 22 March 2023 Revised: 24 April 2023 Accepted: 27 April 2023 Published: 05 May 2023
  • MSC : 65L12, 65M06, 65M12

  • The construction of efficient numerical schemes with uniform convergence order for time-fractional diffusion equations (TFDEs) is an important research problem. We are committed to study an efficient uniform accuracy scheme for TFDEs. Firstly, we use the piecewise quadratic interpolation to construct an efficient uniform accuracy scheme for the fractional derivative of time. And the local truncation error of the efficient scheme is also given. Secondly, the full discrete numerical scheme for TFDEs is given by combing the spatial center second order scheme and the above efficient time scheme. Thirdly, the efficient scheme's stability and error estimates are strictly theoretical analysis to obtain that the unconditionally stable scheme is 3β convergence order with uniform accuracy in time. Finally, some numerical examples are applied to show that the proposed scheme is an efficient unconditionally stable scheme.

    Citation: Junying Cao, Qing Tan, Zhongqing Wang, Ziqiang Wang. An efficient high order numerical scheme for the time-fractional diffusion equation with uniform accuracy[J]. AIMS Mathematics, 2023, 8(7): 16031-16061. doi: 10.3934/math.2023818

    Related Papers:

    [1] Ahmed Ghezal, Mohamed Balegh, Imane Zemmouri . Solutions and local stability of the Jacobsthal system of difference equations. AIMS Mathematics, 2024, 9(2): 3576-3591. doi: 10.3934/math.2024175
    [2] Hashem Althagafi, Ahmed Ghezal . Solving a system of nonlinear difference equations with bilinear dynamics. AIMS Mathematics, 2024, 9(12): 34067-34089. doi: 10.3934/math.20241624
    [3] M. T. Alharthi . Correction: On the solutions of some systems of rational difference equations. AIMS Mathematics, 2025, 10(2): 2277-2278. doi: 10.3934/math.2025105
    [4] M. T. Alharthi . On the solutions of some systems of rational difference equations. AIMS Mathematics, 2024, 9(11): 30320-30347. doi: 10.3934/math.20241463
    [5] Eunjung Lee, Dojin Kim . Stability analysis of the implicit finite difference schemes for nonlinear Schrödinger equation. AIMS Mathematics, 2022, 7(9): 16349-16365. doi: 10.3934/math.2022893
    [6] Shulan Kong, Chengbin Wang, Yawen Sun . A recursive filter for a class of two-dimensional nonlinear stochastic systems. AIMS Mathematics, 2025, 10(1): 1741-1756. doi: 10.3934/math.2025079
    [7] Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974
    [8] Abdulghani R. Alharbi . Traveling-wave and numerical solutions to nonlinear evolution equations via modern computational techniques. AIMS Mathematics, 2024, 9(1): 1323-1345. doi: 10.3934/math.2024065
    [9] Ibraheem M. Alsulami, E. M. Elsayed . On a class of nonlinear rational systems of difference equations. AIMS Mathematics, 2023, 8(7): 15466-15485. doi: 10.3934/math.2023789
    [10] Nan Li, Jiachuan Geng, Lianzhong Yang . Some results on transcendental entire solutions to certain nonlinear differential-difference equations. AIMS Mathematics, 2021, 6(8): 8107-8126. doi: 10.3934/math.2021470
  • The construction of efficient numerical schemes with uniform convergence order for time-fractional diffusion equations (TFDEs) is an important research problem. We are committed to study an efficient uniform accuracy scheme for TFDEs. Firstly, we use the piecewise quadratic interpolation to construct an efficient uniform accuracy scheme for the fractional derivative of time. And the local truncation error of the efficient scheme is also given. Secondly, the full discrete numerical scheme for TFDEs is given by combing the spatial center second order scheme and the above efficient time scheme. Thirdly, the efficient scheme's stability and error estimates are strictly theoretical analysis to obtain that the unconditionally stable scheme is 3β convergence order with uniform accuracy in time. Finally, some numerical examples are applied to show that the proposed scheme is an efficient unconditionally stable scheme.



    This paper is devoted to study the expressions forms of the solutions and periodic nature of the following third-order rational systems of difference equations

    xn+1=yn1znzn±xn2,yn+1=zn1xnxn±yn2, zn+1=xn1ynyn±zn2,

    with initial conditions are non-zero real numbers.

    In the recent years, there has been great concern in studying the systems of difference equations. One of the most important reasons for this is a exigency for some mechanization which can be used in discussing equations emerge in mathematical models characterizing real life situations in economic, genetics, probability theory, psychology, population biology and so on.

    Difference equations display naturally as discrete peer and as numerical solutions of differential equations having more applications in ecology, biology, physics, economy, and so forth. For all that the difference equations are quite simple in expressions, it is frequently difficult to realize completely the dynamics of their solutions see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] and the related references therein.

    There are some papers dealed with the difference equations systems, for example, The periodic nature of the solutions of the nonlinear difference equations system

    An+1=1Cn,Bn+1=BnAn1Bn1,Cn+1=1An1,

    has been studied by Cinar in [7].

    Almatrafi [3] determined the analytical solutions of the following systems of rational recursive equations

    xn+1=xn1yn3yn1(±1±xn1yn3),yn+1=yn1xn3xn1(±1±yn1xn3).

    In [20], Khaliq and Shoaib studied the local and global asymptotic behavior of non-negative equilibrium points of a three-dimensional system of two order rational difference equations

    xn+1=xn1ε+xn1yn1zn1,yn+1=yn1ζ+xn1yn1zn1, zn+1=zn1η+xn1yn1zn1.

    In [9], Elabbasy et al. obtained the form of the solutions of some cases of the following system of difference equations

    xn+1=a1+a2yna3zn+a4xn1zn, yn+1=b1zn1+b2znb3xnyn+b4xnyn1,zn+1=c1zn1+c2znc3xn1yn1+c4xn1yn+c5xnyn.

    In [12], Elsayed et al. have got the solutions of the systems of rational higher order difference equations

    An+1=1AnpBnp,Bn+1=AnpBnpAnqBnq,

    and

    An+1=1AnpBnpCnp,Bn+1=AnpBnpCnpAnqBnqCnq,Cn+1=AnqBnqCnqAnrBnrCnr.

    Kurbanli [25,26] investigated the behavior of the solutions of the following systems

    An+1=An1An1Bn1,Bn+1=Bn1Bn1An1,  Cn+1=1CnBn,An+1=An1An1Bn1,Bn+1=Bn1Bn1An1,  Cn+1=Cn1Cn1Bn1.

    In [32], Yalçınkaya has obtained the conditions for the global asymptotically stable of the system

    An+1=BnAn1+aBn+An1,Bn+1=AnBn1+aAn+Bn1.

    Zhang et al. [39] investigated the persistence, boundedness and the global asymptotically stable of the solutions of the following system

    Rn=A+1Qnp,   Qn=A+Qn1RnrQns.

    Similar to difference equations and systems were studied see [21,22,23,24,27,28,29,30,31,32,33,34,35,36,37,38].

    In this section, we obtain the expressions form of the solutions of the following three dimension system of difference equations

    xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, (1)

    where nN0 and the initial conditions are non-zero real numbers.

    Theorem 1. We assume that {xn,yn,zn} are solutions of system (1).Then

    x6n2=ak3nn1i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k),x6n1=bf3nn1i=0(g+(6i+1)f)(g+(6i+3)f)(g+(6i+5)f),x6n=c3n+1n1i=0(d+(6i+2)c)(d+(6i+4)c)(d+(6i+6)c),x6n+1=ek3n+1(a+k)n1i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k),
    x6n+2=f3n+2(g+2f)n1i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f),x6n+3=hc3n+2(d+c)(d+3c)n1i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c),
    y6n2=dc3nn1i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c),y6n1=ek3nn1i=0(a+(6i+1)k)(a+(6i+3)k)(a+(6i+5)k),y6n=f3n+1n1i=0(g+(6i+2)f)(g+(6i+4)f)(g+(6i+6)f),y6n+1=hc3n+1(d+c)n1i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c),y6n+2=k3n+2(a+2k)n1i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k),y6n+3=bf3n+2(g+f)(g+3f)n1i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f),

    and

    z6n2=gf3nn1i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f),z6n1=hc3nn1i=0(d+(6i+1)c)(d+(6i+3)c)(d+(6i+5)c),z6n=k3n+1n1i=0(a+(6i+2)k)(a+(6i+4)k)(a+(6i+6)k),z6n+1=bf3n+1(g+f)n1i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f),
    z6n+2=c3n+2(d+2c)n1i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c),z6n+3=ek3n+2(a+k)(a+3k)n1i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k),

    where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k.

    Proof. For n=0 the result holds. Now assume that n>1 and that our assumption holds for n1, that is,

    x6n8=ak3n3n2i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k),x6n7=bf3n3n2i=0(g+(6i+1)f)(g+(6i+3)f)(g+(6i+5)f),x6n6=c3n2n2i=0(d+(6i+2)c)(d+(6i+4)c)(d+(6i+6)c),x6n5=ek3n2(a+k)n2i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k),x6n4=f3n1(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f),x6n3=hc3n1(d+c)(d+3c)n2i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c),
    y6n8=dc3n3n2i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c),y6n7=ek3n3n2i=0(a+(6i+1)k)(a+(6i+3)k)(a+(6i+5)k),y6n6=f3n2n2i=0(g+(6i+2)f)(g+(6i+4)f)(g+(6i+6)f),
    y6n5=hc3n2(d+c)n2i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c),y6n4=k3n1(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k),y6n3=bf3n1(g+f)(g+3f)n2i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f),

    and

    z6n8=gf3n3n2i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f),z6n7=hc3n3n2i=0(d+(6i+1)c)(d+(6i+3)c)(d+(6i+5)c),z6n6=k3n2n2i=0(a+(6i+2)k)(a+(6i+4)k)(a+(6i+6)k),z6n5=bf3n2(g+f)n2i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f),z6n4=c3n1(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c),z6n3=ek3n1(a+k)(a+3k)n2i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k).

    It follows from Eq (1) that

    x6n2=y6n4z6n3z6n3+x6n5=(k3n1(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k)                            )(ek3n1(a+k)(a+3k)n2i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k)                            )(ek3n1(a+k)(a+3k)n2i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k)                            )+(ek3n2(a+k)n2i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k)                            )=(k3n(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))(a+3k)n2i=0(a+(6i+9)k)[(k(a+3k)n2i=0(a+(6i+9)k))+(1n2i=0(a+(6i+3)k))]=(k3n(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))[k+((a+3k)n2i=0(a+(6i+9)k)n2i=0(a+(6i+3)k))]=(k3n(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))[k+(a+(6n3)k)]=ak3na(a+2k)(a+(6n2)k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k).

    Then we see that

    x6n2=k3nn1i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k).

    Also, we see from Eq (1) that

    y6n2=z6n4x6n3x6n3+y6n5=(c3n1(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c)                         )(hc3n1(d+c)(d+3c)n2i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c)                         )(hc3n1(d+c)(d+3c)n2i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c)                         )+(hc3n2(d+c)n2i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c)                         )=(c3n(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c))(d+3c)n2i=0(d+(6i+9)c)[(c(d+3c)n2i=0(d+(6i+9)c))+(1n2i=0(d+(6i+3)c))]=(c3n(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c))[c+d+(6n3)c]=c3n[d+(6n2)c](d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c).

    Then

    y6n2=dc3nn1i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c).

    Finally from Eq (1), we see that

    z6n2=x6n4y6n3y6n3+z6n5=(f3n1(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f)                            )(bf3n1(g+f)(g+3f)n2i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f)                            )(bf3n1(g+f)(g+3f)n2i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f)                            )+(bf3n2(g+f)n2i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f)                            )=(f3n(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))(g+3f)n2i=0(g+(6i+9)f)[(f(g+3f)n2i=0(g+(6i+9)f))+(1n2i=0(g+(6i+3)f))]=(f3n(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))[f+((g+3f)n2i=0(g+(6i+9)f)n2i=0(g+(6i+3)f))]=(f3n(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))[f+(g+(6n3)f)]=f3n(g+(6n2)f)(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f).

    Thus

    z3n2=gf3nn1i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f).

    By similar way, one can show the other relations. This completes the proof.

    Lemma 1. Let {xn,yn,zn} be a positive solution of system (1), then all solution of (1) is bounded and approaching to zero.

    Proof. It follows from Eq (1) that

    xn+1=yn1znzn+xn2yn1,     yn+1=zn1xnxn+yn2zn1,zn+1=xn1ynyn+zn2xn1,

    we see that

    xn+4yn+2,     yn+2zn,  znxn2,    xn+4<xn2,yn+4zn+2,   zn+2xn,   xnyn2,      yn+4<yn2,zn+4xn+2,   xn+2yn,   ynzn2,      zn+4<zn2,

    Then all subsequences of {xn,yn,zn} (i.e., for {xn} are {x6n2}, {x6n1}, {x6n}, {x6n+1}, {x6n+2}, {x6n+3}  are decreasing and at that time are bounded from above by K,L and M since K=max{x2,x1,x0,x1,x2,x3}, L=max{y2,y1,y0,y1,y2,y3} and M=max{z2,z1,z0,z1,z2,z3}.

    Example 1. We assume an interesting numerical example for the system (1) with x2=.22,x1=.4, x0=.12,y2=.62, y1=4, y0=.3,z2=.4,z1=.53 andz0=2. (See Figure 1).

    Figure 1.  This figure shows the behavior of the solutions of the system (1) with the initial conditions x2=.22,x1=.4, x0=.12,y2=.62, y1=4, y0=.3,z2=.4,z1=.53 andz0=2. (We see from this figure that all solutions converges to zero).

    In this section, we get the solution's form of the following system of difference equations

    xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynynzn2, (2)

    where nN0 and the initial values are non-zero real numbers with x2±z0,2z0, z2y0,2y0,3y0 and y22x0,±x0.

    Theorem 2. Assume that {xn,yn,zn} are solutions of (2). Then for n=0,1,2,...,

    x6n2=(1)nk3na2n1(a+2k)n, x6n1=(1)nbf3n(fg)2n(3fg)n, x6n=(1)nc3n+1d2n(2cd)n,x6n+1=ek3n+1(ak)n(a+k)2n+1, x6n+2=(1)nf3n+2gn(2fg)2n+1, x6n+3=(1)nhc3n+2(cd)2n+1(c+d)n+1,
    y6n2=(1)nc3nd2n1(2cd)n, y6n1=ek3n(ak)n(a+k)2n, y6n=(1)nf3n+1gn(2fg)2n,y6n+1=(1)nhc3n+1(cd)2n(c+d)n+1, y6n+2=(1)nk3n+2a2n(a+2k)n+1, y6n+3=(1)nbf3n+2(fg)2n+1(3fg)n+1,

    and

    z6n2=(1)nf3ngn1(2fg)2n, z6n1=(1)nhc3n(cd)2n(c+d)n, z6n=(1)nk3n+1a2n(a+2k)n,z6n+1=(1)nbf3n+1(fg)2n+1(3fg)n, z6n+2=(1)n+1c3n+2d2n+1(2cd)n, z6n+3=ek3n+2(ak)n(a+k)2n+2,

    where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k.

    Proof. The result is true for n=0. Now suppose that n>0 and that our claim verified for n1. That is,

    x6n8=(1)n1k3n3a2n3(a+2k)n1, x6n7=(1)n1bf3n3(fg)2n2(3fg)n1, x6n6=(1)n1c3n2d2n2(2cd)n1,x6n5=ek3n2(ak)n1(a+k)2n1, x6n4=(1)n1f3n1gn1(2fg)2n1, x6n3=(1)n1hc3n1(cd)2n1(c+d)n,
    y6n8=(1)n1c3n3d2n3(2cd)n1, y6n7=ek3n3(ak)n1(a+k)2n2, y6n6=(1)n1f3n2gn1(2fg)2n2,y6n5=(1)n1hc3n2(cd)2n2(c+d)n, y6n4=(1)n1k3n1a2n2(a+2k)n, y6n3=(1)n1bf3n1(fg)2n1(3fg)n,

    and

    z6n8=(1)n1f3n3gn2(2fg)2n2, z6n7=(1)n1hc3n3(cd)2n2(c+d)n1, z6n6=(1)n1k3n2a2n2(a+2k)n1,z6n5=(1)n1bf3n2(fg)2n1(3fg)n1, z6n4=(1)nc3n1d2n1(2cd)n1, z6n3=ek3n1(ak)n1(a+k)2n.

    Now from Eq (2), it follows that

    x6n2=y6n4z6n3z6n3+x6n5=((1)n1k3n1a2n2(a+2k)n)(ek3n1(ak)n1(a+k)2n)(ek3n1(ak)n1(a+k)2n)+(ek3n2(ak)n1(a+k)2n1)=((1)nk3na2n2(a+2k)n)(k+a+k)=(1)nk3na2n1(a+2k)n,y6n2=z6n4x6n3x6n3+y6n5=((1)nc3n1d2n1(2cd)n1)((1)n1hc3n1(cd)2n1(c+d)n)((1)n1hc3n1(cd)2n1(c+d)n)+((1)n1hc3n2(cd)2n2(c+d)n)=((1)nc3nd2n1(2cd)n1)c+cd=(1)nc3nd2n1(2cd)n,z6n2=x6n4y6n3y6n3z6n5=((1)n1f3n1gn1(2fg)2n1)((1)n1bf3n1(fg)2n1(3fg)n)((1)n1bf3n1(fg)2n1(3fg)n)((1)n1bf3n2(fg)2n1(3fg)n1)=((1)n1f3ngn1(2fg)2n1)(f3f+g)=(1)nf3ngn1(2fg)2n.

    Also, we see from Eq (2) that

    x6n1=y6n3z6n2z6n2+x6n4=((1)n1bf3n1(fg)2n1(3fg)n)((1)nf3ngn1(2fg)2n)((1)nf3ngn1(2fg)2n)+((1)n1f3n1gn1(2fg)2n1)=((1)nbf3n(fg)2n1(3fg)n)(f+2fg)=(1)nbf3n(fg)2n(3fg)n,y6n1=z6n3x6n2x6n2+y6n4=(ek3n1(ak)n1(a+k)2n)((1)nk3na2n1(a+2k)n)((1)nk3na2n1(a+2k)n)+((1)n1k3n1a2n2(a+2k)n)=(ek3n(ak)n1(a+k)2n)k+a=ek3n(ak)n(a+k)2n,z6n1=x6n3y6n2y6n2z6n4=((1)n1hc3n1(cd)2n1(c+d)n)((1)nc3nd2n1(2cd)n)((1)nc3nd2n1(2cd)n)((1)nc3n1d2n1(2cd)n1)=((1)n1hc3n(cd)2n1(c+d)n)c(2cd)=(1)nhc3n(cd)2n(c+d)n.

    Also, we can prove the other relations.

    Example 2. See below Figure 2 for system (2) with the initial conditions x2=11,x1=5, x0=13,y2=6, y1=7, y0=3,z2=14, z1=9 andz0=2.

    Figure 2.  This figure shows the behavior of solutions of the systems of rational recursive sequence xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynynzn2, when we take the initial conditions: x2=11,x1=5, x0=13,y2=6, y1=7, y0=3,z2=14, z1=9 andz0=2. (See the figure we can conclude that all the solutions unboundedness solutions).

    Here, we obtain the form of solutions of the system

    xn+1=yn1znzn+xn2,yn+1=zn1xnxnyn2, zn+1=xn1ynyn+zn2, (3)

    where nN0 and the initial values are non-zero real numbers with x2±z0,2z0, z2±y0,2y0 and y2x0,2x0,3x0.

    Theorem 3. If  {xn,yn,zn} are solutions of system (3) where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k. Then for n=0,1,2,...,

    x6n2=k3na2n1(a2k)n, x6n1=(1)nbf3n(fg)n(f+g)2n, x6n=(1)nc3n+1dn(d2c)2n,x6n+1=(1)nek3n+1(ak)2n(a+k)n+1, x6n+2=(1)nf3n+2g2n(2f+g)n+1, x6n+3=(1)nhc3n+2(cd)2n+1(3cd)n+1,
    y6n2=(1)nc3ndn1(d2c)2n, y6n1=(1)nek3n(ak)2n(a+k)n, y6n=(1)nf3n+1g2n(2f+g)n,y6n+1=(1)nhc3n+1(cd)2n+1(3cd)n, y6n+2=k3n+2a2n+1(a2k)n, y6n+3=(1)nbf3n+2(fg)n(f+g)2n+2,

    and

    z6n2=(1)nf3ng2n1(2f+g)n, z6n1=(1)nhc3n(cd)2n(3cd)n, z6n=k3n+1a2n(a2k)n,z6n+1=(1)nbf3n+1(fg)n(f+g)2n+1, z6n+2=(1)nc3n+2dn(2cd)2n+1, z6n+3=(1)n+1ek3n+2(ak)2n+1(a+k)n+1.

    Proof. As the proof of Theorem 2 and so will be left to the reader.

    Example 3. We put the initials x2=8,x1=15, x0=13,y2=6,y1=7, y0=3,z2=14,z1=19 andz0=2, for the system (3), see Figure 3.

    Figure 3.  This figure shows the unstable of the solutions of the difference equations system (3) with the initial values x2=8,x1=15, x0=13,y2=6,y1=7, y0=3,z2=14,z1=19 andz0=2.

    The following systems can be treated similarly.

    In this section, we deal with the solutions of the following system

    xn+1=yn1znznxn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, (4)

    where nN0 and the initial values are non-zero real with x2z0,2z0,3z0, z2±y0,2y0 and y2±x0,2x0.

    Theorem 4. The solutions of system (4) are given by

    x6n2=(1)nk3nan1(a2k)2n, x6n1=(1)nbf3n(fg)2n(f+g)n, x6n=(1)nc3n+1d2n(d+2c)n,x6n+1=ek3n+1(ak)2n+1(a3k)n, x6n+2=(1)n+1f3n+2g2n+1(2fg)n, x6n+3=(1)n+1hc3n+2(cd)n(c+d)2n+2,
    y6n2=(1)nc3nd2n1(d+2c)n, y6n1=ek3n(ak)2n(a3k)n, y6n=(1)nf3n+1g2n(2fg)n,y6n+1=(1)nhc3n+1(c+d)2n+1(cd)n, y6n+2=k3n+2an(a2k)2n+1, y6n+3=(1)nbf3n+2(fg)2n+1(f+g)n+1,

    and

    z6n2=(1)nf3ng2n1(2fg)n, z6n1=(1)nhc3n(c+d)2n(cd)n, z6n=(1)nk3n+1an(a2k)2n,z6n+1=(1)nbf3n+1(fg)2n(f+g)n+1, z6n+2=(1)nc3n+2d2n(2c+d)n+1, z6n+3=ek3n+2(ak)2n+1(a3k)n+1,

    where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k.

    Example 4. Figure 4 shows the behavior of the solution of system (4) with x2=18,x1=15, x0=3,y2=6, y1=.7, y0=3, z2=4,z1=9 andz0=5.

    Figure 4.  This figure shows the behavior of the system xn+1=yn1znznxn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2 with the initial conditions:- x2=18,x1=15, x0=3, y2=6, y1=.7, y0=3, z2=4,z1=9 andz0=5.0.6, x1=0.2, x0=5. (From the figure, we see that all solutions goes to zero).

    In this section, we obtain the solutions of the difference system

    xn+1=yn1znznxn2,yn+1=zn1xnxnyn2, zn+1=xn1ynynzn2, (5)

    where the initials are arbitrary non-zero real numbers with x2z0, z2y0 and y2x0.

    Theorem 5. If  {xn,yn,zn} are solutions of system (5) where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k. Then

    x6n2=k3na3n1, x6n1=bf3n(fg)3n, x6n=c3n+1d3n,x6n+1=ek3n+1(ka)3n+1, x6n+2=f3n+2g3n+1, x6n+3=hc3n+2(cd)3n+2,
    y6n2=c3nd3n1, y6n1=ek3n(ka)3n, y6n=f3n+1g3n,y6n+1=hc3n+1(cd)3n+1, y6n+2=k3n+2a3n+1, y6n+3=bf3n+2(fg)3n+2,

    and

    z6n2=f3ng3n1, z6n1=hc3n(cd)3n, z6n=k3n+1a3n,z6n+1=bf3n+1(fg)3n+1, z6n+2=c3n+2d3n+1, z6n+3=ek3n+2(ka)3n+2.

    Example 5. Figure 5 shows the dynamics of the solution of system (5) with x2=18,x1=15,x0=3,y2=6,y1=.7, y0=3,z2=4,z1=9 andz0=5.

    Figure 5.  This figure shows the behavior of the system of nonlinear difference equations (5) with the initial conditions considered as follows:- x2=18,x1=15, x0=3,y2=6, y1=.7, y0=3,z2=4,z1=9 andz0=5.

    This paper discussed the expression's form and boundedness of some systems of rational third order difference equations. In Section 2, we studied the qualitative behavior of system xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, first we have got the form of the solutions of this system, studied the boundedness and gave numerical example and drew it by using Matlab. In Section 3, we have got the solution's of the system xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynynzn2, and take a numerical example. In Sections 4–6, we obtained the solution of the following systems respectively, xn+1=yn1znzn+xn2,yn+1=zn1xnxnyn2, zn+1=xn1ynyn+zn2, xn+1=yn1znznxn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, and xn+1=yn1znznxn2,yn+1=zn1xnxnyn2, zn+1=xn1ynynzn2. Also, in each case we take a numerical example to illustrates the results.

    This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G: 233–130–1441). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

    All authors declare no conflicts of interest in this paper.



    [1] Y. Wang, L. Ren, A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients, Appl. Math. Comput., 342 (2019), 71–93. https://doi.org/10.1016/j.amc.2018.09.007 doi: 10.1016/j.amc.2018.09.007
    [2] H. Zhang, J. Jia, X. Jiang, An optimal error estimate for the two-dimensional nonlinear time fractional advection-diffusion equation with smooth and non-smooth solutions, Comput. Math. Appl., 79 (2020), 2819–2831. https://doi.org/10.1016/j.camwa.2019.12.013 doi: 10.1016/j.camwa.2019.12.013
    [3] Y. H. Youssri, A. G. Atta, Petrov-Galerkin Lucas polynomials procedure for the time-fractional diffusion equation, Contemp. Math., 4 (2023), 230–248. https://doi.org/10.37256/cm.4220232420 doi: 10.37256/cm.4220232420
    [4] T. Eftekhari, S. Hosseini, A new and efficient approach for solving linear and nonlinear time-fractional diffusion equations of distributed order, Comput. Appl. Math., 41 (2022), 281. https://doi.org/10.1007/s40314-022-01981-5 doi: 10.1007/s40314-022-01981-5
    [5] Y. Wang, H. Chen, Pointwise error estimate of an alternating direction implicit difference scheme for two-dimensional time-fractional diffusion equation, Comput. Math. Appl., 99 (2021), 155–161. https://doi.org/10.1016/j.camwa.2021.08.012 doi: 10.1016/j.camwa.2021.08.012
    [6] Z. Liu, A. Cheng, X. Li, A novel finite difference discrete scheme for the time fractional diffusion-wave equation, Appl. Numer. Math., 134 (2018), 17–30. https://doi.org/10.1016/j.apnum.2018.07.001 doi: 10.1016/j.apnum.2018.07.001
    [7] A. A. Alikhanov, C. Huang, A high-order L2 type difference scheme for the time-fractional diffusion equation, Appl. Math. Comput., 411 (2021), 126545. https://doi.org/10.1016/j.amc.2021.126545 doi: 10.1016/j.amc.2021.126545
    [8] M. Cui, Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation, Numer. Algor., 62 (2013), 383–409. https://doi.org/10.1007/s11075-012-9589-3 doi: 10.1007/s11075-012-9589-3
    [9] C. Lv, C. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38 (2016), A2699–A2722. https://doi.org/10.1137/15M102664X doi: 10.1137/15M102664X
    [10] S. Kumar, D. Zeidan, An efficient Mittag-Leffler kernel approach for time-fractional advection-reaction-diffusion equation, Appl. Numer. Math., 170 (2021), 190–207. https://doi.org/10.1016/j.apnum.2021.07.025 doi: 10.1016/j.apnum.2021.07.025
    [11] J. Shen, C. Sheng, An efficient space-time method for time fractional diffusion equation, J. Sci. Comput., 81 (2019), 1088–1110. https://doi.org/10.1007/s10915-019-01052-8 doi: 10.1007/s10915-019-01052-8
    [12] M. A. Abdelkawy, A. M. Lopes, M. A. Zaky, Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction-diffusion equations, Comput. Appl. Math., 38 (2019), 81. https://doi.org/10.1007/s40314-019-0845-1 doi: 10.1007/s40314-019-0845-1
    [13] M. A. Zaky, A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525–3538. https://doi.org/10.1007/s40314-017-0530-1 doi: 10.1007/s40314-017-0530-1
    [14] J. Zhang, Z. Fang, H. Sun, Exponential-sum-approximation technique for variable-order time-fractional diffusion equations, J. Appl. Math. Comput., 68 (2022), 323–347. https://doi.org/10.1007/s12190-021-01528-7 doi: 10.1007/s12190-021-01528-7
    [15] P. Lyu, S. Vong, A fast linearized numerical method for nonlinear time-fractional diffusion equations, Numer. Algor., 87 (2021), 381–408. https://doi.org/10.1007/s11075-020-00971-0 doi: 10.1007/s11075-020-00971-0
    [16] S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys., 21 (2017), 650–678. https://doi.org/10.4208/cicp.OA-2016-0136
    [17] P. Roul, V. Rohil, A high-order numerical scheme based on graded mesh and its analysis for the two-dimensional time-fractional convection-diffusion equation, Comput. Math. Appl., 126 (2022), 1–13. https://doi.org/10.1016/j.camwa.2022.09.006 doi: 10.1016/j.camwa.2022.09.006
    [18] S. Martin, O. Eugene, L. Jose, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329
    [19] N. Kedia, A. Alikhanov, V. Singh, Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel, Appl. Numer. Math., 172 (2022), 546–565. https://doi.org/10.1016/j.apnum.2021.11.006 doi: 10.1016/j.apnum.2021.11.006
    [20] K. Mustapha, An L1 approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded meshes, SIAM J. Numer. Anal., 58 (2020), 1319–1338. https://doi.org/10.1137/19M1260475 doi: 10.1137/19M1260475
    [21] N. Kopteva, Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem, Math. Comp., 90 (2021), 19–40. https://doi.org/10.1090/mcom/3552 doi: 10.1090/mcom/3552
    [22] A. G. Atta, Y. H. Youssri, Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel, Comp. Appl. Math., 41 (2022), 381. https://doi.org/10.1007/s40314-022-02096-7 doi: 10.1007/s40314-022-02096-7
    [23] J. Huang, D. Yang, L. O. Jay, Efficient methods for nonlinear time fractional diffusion-wave equations and their fast implementations, Numer. Algor., 85 (2020), 375–397. https://doi.org/10.1007/s11075-019-00817-4 doi: 10.1007/s11075-019-00817-4
    [24] J. Cao, C. Xu, A high order schema for the numercial solution of the fractional ordinary differential equations, J. Comput. Phys., 238 (2013), 154–168. https://doi.org/10.1016/j.jcp.2012.12.013 doi: 10.1016/j.jcp.2012.12.013
    [25] J. Cao, Z. Cai, Numerical analysis of a high-order scheme for nonlinear fractional differential equations with uniform accuracy, Numer. Math. Theor. Meth. Appl., 14 (2021), 71–112. https://doi.org/10.4208/nmtma.OA-2020-0039 doi: 10.4208/nmtma.OA-2020-0039
    [26] L. Feng, P. Zhuang, F. Liu, Y. T. Gu, Finite element method for space-time fractional diffusion equation, Numer. Algor., 72 (2016), 749–767. https://doi.org/10.1007/s11075-015-0065-8 doi: 10.1007/s11075-015-0065-8
    [27] H. Zhang, X. Jiang, F. Zeng, An H1 convergence of the spectral method for the time-fractional non-linear diffusion equations, Adv. Comput. Math., 47 (2021), 63. https://doi.org/10.1007/s10444-021-09892-5 doi: 10.1007/s10444-021-09892-5
    [28] A. S. V. R. Kanth, N. Garg, An unconditionally stable algorithm for multiterm time fractional advection-diffusion equation with variable coefficients and convergence analysis, Numer. Methods Partial Differ. Equ., 37 (2021), 1928–1945. https://doi.org/10.1002/num.22629 doi: 10.1002/num.22629
    [29] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031
    [30] D. A. Murio, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138–1145. https://doi.org/10.1016/j.camwa.2008.02.015 doi: 10.1016/j.camwa.2008.02.015
    [31] R. Gorenflo, E. A. Abdel-Rehim, Convergence of the Grünwald-Letnikov scheme for time-fractional diffusion, J. Comput. Appl. Math., 205 (2007), 871–881. https://doi.org/10.1016/j.cam.2005.12.043 doi: 10.1016/j.cam.2005.12.043
    [32] R. L. Burden, J. D. Faires, A. M. Burden, Numerical analysis, Cengage Learning, 2015.
    [33] Y. H. Youssri, A. G. Atta, Spectral collocation approach via normalized shifted Jacobi polynomials for the nonlinear Lane-Emden equation with fractal-fractional derivative, Fractal Fract., 7 (2023), 133. https://doi.org/10.3390/fractalfract7020133 doi: 10.3390/fractalfract7020133
  • This article has been cited by:

    1. Khalil S. Al-Basyouni, Elsayed M. Elsayed, On Some Solvable Systems of Some Rational Difference Equations of Third Order, 2023, 11, 2227-7390, 1047, 10.3390/math11041047
    2. Ibraheem M. Alsulami, E. M. Elsayed, On a class of nonlinear rational systems of difference equations, 2023, 8, 2473-6988, 15466, 10.3934/math.2023789
    3. E.M. Elsayed, B.S. Alofi, The periodic nature and expression on solutions of some rational systems of difference equations, 2023, 74, 11100168, 269, 10.1016/j.aej.2023.05.026
    4. Hashem Althagafi, Dynamics of difference systems: a mathematical study with applications to neural systems, 2025, 10, 2473-6988, 2869, 10.3934/math.2025134
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1453) PDF downloads(70) Cited by(1)

Figures and Tables

Figures(2)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog