A surface $ \mathcal{M}^{2} $ with position vector $ r = r(s, t) $ is called a Hasimoto surface if the relation $ r_{t} = r_{s} \wedge r_{ss} $ holds. In this paper, we first define the Beltrami-Laplace operator according to the three fundamental forms of the surface, then we classify the $ J $-harmonic Hasimoto surfaces and their Gauss map in $ \mathbb{E}^{3} $, for $ J = II $ and $ III $.
Citation: Hassan Al-Zoubi, Bendehiba Senoussi, Mutaz Al-Sabbagh, Mehmet Ozdemir. The Chen type of Hasimoto surfaces in the Euclidean 3-space[J]. AIMS Mathematics, 2023, 8(7): 16062-16072. doi: 10.3934/math.2023819
A surface $ \mathcal{M}^{2} $ with position vector $ r = r(s, t) $ is called a Hasimoto surface if the relation $ r_{t} = r_{s} \wedge r_{ss} $ holds. In this paper, we first define the Beltrami-Laplace operator according to the three fundamental forms of the surface, then we classify the $ J $-harmonic Hasimoto surfaces and their Gauss map in $ \mathbb{E}^{3} $, for $ J = II $ and $ III $.
[1] | A. Kelleci, M. Bektaş, M. Ergüt, The Hasimoto surface according to bishop frame, Adıyaman University Journal of Science, 9 (2019), 13–22. |
[2] | N. Abdel-All, R. Hussien, T. Youssef, Hasimoto surfaces, Life Sci. J., 9 (2012) 556–560. |
[3] | W. Schief, C. Rogers, Binormal motion of curves of constant curvature and torsion. generation of soliton surfaces, Proc. R. Soc. Lond., 455 (1999), 3163–3188. http://dx.doi.org/10.1098/rspa.1999.0445 doi: 10.1098/rspa.1999.0445 |
[4] | C. Rogers, W. Schief, Intrinsic geometry of the NLS equation and its backlund transformation, Stud. Appl. Math., 101 (1998), 267–287. http://dx.doi.org/10.1111/1467-9590.00093 doi: 10.1111/1467-9590.00093 |
[5] | M. Erdogdu, M. Özdemir, Geometry of Hasimoto surfaces in Minkowski 3-space, Math. Phys. Anal. Geom., 17 (2014), 169–181. http://dx.doi.org/10.1007/s11040-014-9148-3 doi: 10.1007/s11040-014-9148-3 |
[6] | M. Elzawy, Hasimoto surfaces in Galilean space $G_{3}$, J. Egypt. Math. Soc., 29 (2021), 5. http://dx.doi.org/10.1186/s42787-021-00113-y doi: 10.1186/s42787-021-00113-y |
[7] | M. Mhailan, M. Abu Hammad, M. Al Horani, R. Khalil, On fractional vector analysis, Journal of Mathematical and Computational Science, 10 (2020), 2320–2326. |
[8] | Y. Li, Z. Chen, S. Nazra, R. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry, 15 (2023), 277. http://dx.doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277 |
[9] | Y. Li, M. Aldossary, R. Abdel-Baky, Spacelike circular surfaces in Minkowski 3-space, Symmetry, 15 (2023), 173. http://dx.doi.org/10.3390/sym15010173 doi: 10.3390/sym15010173 |
[10] | Y. Li, O. Tuncer, On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space, Math. Method. Appl. Sci., in press. http://dx.doi.org/10.1002/mma.9173 |
[11] | Y. Li, A. Alkhaldi, A. Ali, R. Abdel-Baky, M. Khalifa Saad, Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space, AIMS Mathematics, 8 (2023), 13875–13888. http://dx.doi.org/10.3934/math.2023709 doi: 10.3934/math.2023709 |
[12] | M. Erdo$\widetilde {\rm{g}}$du, A. Yavuz, Differential geometric aspects of nonlinear Schrödinger equation, Commun. Fac. Sci. Univ., 70 (2021), 510–521. http://dx.doi.org/10.31801/cfsuasmas.724634 doi: 10.31801/cfsuasmas.724634 |
[13] | B. Senoussi, M. Bekkar, Helicoidal surfaces with $\Delta^{J}r = Ar$ in $3$-dimensional Euclidean space, Stud. Univ. Babes-Bol. Math., 60 (2015), 437–448. |
[14] | S. Stamatakis, H. Al-Zoubi, On surfaces of finite Chen-type, Results Math., 43 (2003), 181–190. http://dx.doi.org/10.1007/BF03322734 doi: 10.1007/BF03322734 |
[15] | S. Stamatakis, H. Al-Zoubi, Surfaces of revolution satisfying $\Delta^IIIx = Ax$, J. Geom. Graph., 14 (2010), 181–186. |
[16] | B. Senoussi, A. Akbay, Characterizations of Hasimoto surfaces in Euclidean 3-spaces $\mathbb{E}^{3}$, Appl. Math. Inf. Sci., 16 (2022), 689–694. http://dx.doi.org/10.18576/amis/160504 doi: 10.18576/amis/160504 |