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1. Introduction

In the theory of curves in Riemannian manifolds, one of the important and interesting problems is
the characterizations of a regular curve. The authors in [1] examined the curvatures of the Hasimoto
surface according to Bishop’s frame and gave some characterization of the parameter curves for these
surfaces. The geometric properties of Hasimoto surfaces are investigated by [2]. In [3], Schief and
Rogers studied the binormal motion of curves with constant curvatures. In [4], the authors studied the
intrinsic geometry of the nonlinear Schrédinger (NLS) equation in E?.

Hasimoto surfaces, also known as Frenet frames surfaces, are a class of surfaces in Euclidean 3-
space that arise from solutions to the Schrodinger equation in quantum mechanics. Specifically, they
are associated with the motion of a charged particle in a magnetic field.

The construction of Hasimoto surfaces involves the use of the Frenet-Serret frame, which is a set
of orthonormal vectors that describe the local geometry of a curve or surface. In the case of Hasimoto
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surfaces, the Frenet-Serret frame is used to describe the motion of a curve in Euclidean 3-space under
the influence of a magnetic field. This leads to the construction of a surface in 3-space that has certain
interesting properties, such as having a constant mean curvature.

In [5], authors studied Hasimoto surfaces in Minkowski 3-space. On the other hand, M. Elzawy
in [6] investigated Hasimoto surfaces in Galilean space Gj3.

In this work, we briefly give the geometric properties of Hasimoto surfaces in the Euclidean 3-
space. Especially, we obtain the curvatures of Hasimoto surface according to Bishop’s frame. Then, we
investigate the second Laplace operator for the first, second, and third fundamental forms of Hasimoto
surfaces.

Further, one can follow the idea in [7] by defining the first and second Beltrami operators using the
definition of the fractional vector operators. It is also interesting, as future work, to do interdisciplinary
research, apply a mix or a blend of the techniques followed in [8-11] and combine them with the
methods of this paper to obtain more new properties of Hasimoto surfaces.

2. Preliminaries

Let ¢ : I — M? be a regular unit speed curve on the orientable surface M?. Let {T, N, B} be the
orthonormal moving Frenet frame along the curve ¢ in M? such that T = ¢’ is the unit vector field
tangent to ¢, N is the unit vector field in the direction 7" normal to ¢ ( principal normal ) and B = TAN
(binormal vector). Then we have the following Frenet equations

T 0 £ O T
N |[=| -k 0 7 || N | 2.1
B 0 -t 0 B

Functions k and 7 are the curvature and the torsion of ¢.
Introduce a new frame, called Darboux frame {T', n, g} with

T 1 0 0 T
n =10 cosB sing N |, (2.2)
g 0 —sinB cosf B

where g = n A T and S is the angle between the vector fields N and 7.
The derivative formulas of (2.2) can be given as follows:

T, T 0 k, kg T
n, |=|n |=| -k, 0 -1, n |, 2.3)
g, g kg 1. 0 JU g
where k, is the geodesic curvature, k, is the normal curvature, ¢, is the geodesic torsion of the curve ¢
and Ty = Z—i. From now on we will use the prime ’ to denote the derivative with respect to the

parameter s.
Here Darboux curvatures are defined by

ky(s) = k(s)cos B(s), kq(s) = —k(s)sinfB(s), t.(s) = —7(s) = B'(s). 2.4)
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Theorem 1. [12] Suppose r = r(s,t) is an NLS surface such that r = r(s,t) is a unit speed curve with
a normal vector field for all t. Then the following is satisfied:

T, 0 a 2 T
[m]—[—a 0 —7][77], (2.5)
8 -1 v 0 g

where a, A and y are smooth functions given by

a = k;, — kyt,
A=~k —kt,, (2.6)
k*y = (kk'Y —a® — 2> + 6,

where 6 = kg k,, — k; k, and T, = ‘fl—f.

From (2.4) and (2.6) we obtain

§ = Bk,
A+ 2=k + k’z,
ak, — Ak, = kK.

Using compatibility conditions Ty, = T, 1, = 17, and g,, = g,,, We get

o 0 -t k a ky,
A=t 0 -k, A |+ kg, |
v —kys k, O 0% Iy,

The mean curvature H,,.,, and the Gaussian curvature K are, respectively, defined by

EN +GL-2FM

Hmean = s
2(EG - F?)
and
_ LN — M?
“T EG-F*

The Laplace-Beltrami operator of a smooth function ¢ : M?> — R, with respect to the first
fundamental form I of the surface M? is the operator A/, defined in [13—15] as follows:

P [Q(G%—F%)_Q(Fsas—E%)] o
VEG - F2 |Os\VEG - F2] Ot\VEG - F?

The second differential parameter of Beltrami of a function ¢ : M?> — R,(s,f) — ¢(s,1) with
respect to the second fundamental form 17 of M? is the operator A’ which is defined by [13—15]

-1 0| No,— M 0| Lo, — My,
AII()D — _ (p QO[ + _ "p[ ‘70 , (2,8)

Ly — a2 |25\ v - a]) O i - a2
where LN — M? # 0 since the surface has no parabolic points.
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In classical literature, one writes the third fundamental form as

I11(s,1) = e11ds* + 2e1pds dt + exd??,

where ) )
EM” -2FLM + GL
e11 =< Ny, Ny >= >
EG - F?
EMN — FLN + GLM — FM?
=< N;, N, >= )
€12 =< Vg, [V > £G — 2
GM?* —-2FNM + EN?
622:<Nt,Nt >= EG - F? .

The second Beltrami differential operator with respect to the third fundamental form /71 is defined
by [13-15]

mr _ _L i i'i
AT = ( e (\/Eef axf))’ (2.9)

le|

where e = det(e;;) and '/ denote the components of the inverse tensor of e; -
3. Hasimoto surfaces

In this section, Hasimoto surfaces are investigated by using the Darboux frame and discussing the
geometric properties of Hasimoto surfaces. We find the Gaussian K; and mean curvatures H,,.,, of
this surface.

Let r = r(s, 1) be the position vector of a curve ¢ moving on a surface M? in E? such that r(s,?) is a
unit speed curve for all 7. If the surface M is a Hasimoto surface, then, the position vector r satisfies
the following condition

Ty =Fg A Fg. (3.1

This is called the vortex filament or smoke ring equation.

Lemma 1. [16] The evolution equations for curvature and torsion are

ke = kv +21k,
Kk’ 4 ,
T, = —(?—Tz) — kk',
k//
B = 7— - Y.

The coeflicients of the first fundamental form of the surface r = r(s, 1) are
E=1, F=0, G=k. 3.2)
The unit normal vector of the Hasimoto surface is given by
N = —cosfB(s)n +sinfB(s) g. 3.3)
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Lemma 2. The components b;; and e;; of the second and the third fundamental tensors in coordinates

are the following

b]]ZL

€11

€2

From (3.2) and (3.4) we have

= —k, bp=M=—kt, by=N=—-kr*+k",
k/l
= K+71, ep=tk+1)- kT,
kl/ 2
= B2l
T (k T
k/l
KG = _?a

K~ k(K> + )

Hpean =
2k?

where k # 0, since the surface has no parabolic points.

4. J-Hasimoto surface in the Euclidean 3-space

We consider a surface M? in E? parametrized by

r(s,t) = (r1(s, 1), r(s, 1), r3(s,1)).

(3.4)

(3.5)

(3.6)

(3.7)

4.1)

Definition 1. A surface in the three-dimensional Euclidean space is said to be J-harmonic if it satisfies
the condition A'r = 0, where A’ denotes the Laplace operator with respect to the fundamental forms I—

111

4.1. I-harmonic Hasimoto surfaces in E?

Theorem 2. [16] The Laplacian A of the Hasimoto surface r = r(s, t) can be expressed as

kik k k k.k
Q(S,l‘):—%%—kkn-l-%—%, P(S,l):g-}—kk _ 78

where

Ok 0k,
Koy = 0+ kn = 37
Remark 1.

-1
Alr(s, 1) = - [O(s, ) + P(s,1)g],

kyO(s, 1) + k,P(s, 1) = k(k* + %) = k"'

Corollary 1. [16] Therefore, r is I-harmonic if and only if H,eqn = O.
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4.2. II-harmonic Hasimoto surfaces in E?
In this section, we classify Hasimoto surface with non-degenerate second fundamental form in E?
satisfying the equation
A"r = 0. (4.3)

By a straightforward computation, the Laplacian A of the second fundamental form /1 on M? with
the help of (2.8) and (3.4) turns out to be
62 62 62
A = TS sz Ay (s, z) ~+ Ao, z) C A D75+ Aals D+ As(s, 1) 25 (4.4)

where

Ai(s, 1) 6K’ KT + kK" + kT — kK k" + 4Kk T,

Ao(s,t) = —4KPT(K'T +T'K) + KK + kKK’ = It = kK — kKK = 2Kk K,
As(s, 1) kK" (K — kt?),

Au(s, 1) ATk*K”,  As(s,t) = —2K°K”.

Theorem 3. The formula of the Laplacian A" takes the following form

Ar(s,t) = T k~2 [Ty(s, )T + Ta(s, Hn + T3(s, 0 g], (4.5)
where
[i(s,f) = —4k*t(kK't +7'K) = IPt(kt” + k") + KK + kKKt — kKK,
[y(s,f) = (4K'T +7'K) + Tk* (KK = ki) — k*t"") sin B + (4k*k""?) cos 3,
[s(s, 1) = (4Kt + 7'k + k> (KK’ — kk'") — k*7””") cos B — (4k*k”"?) sin 3,

and |LN — M?| = gkk” # 0, & = +1 since the surface has no parabolic points.

Proof. From (3.1), we have

ro = T,

r, = —ksinfnp—kcosfg,

res = kcosfnp—ksingg,

re = —(kk)T + ((kt* = k") cos — (kt’ + 27k’ sin B)y — (k1> — k") sin 8 + (k" + 27k’) cos B)g,

rg = (krcosB—k'sinB)n— (k' cosB+ krsinp)g.
Substituting the last equations into (4.4) gives (4.5). O

If Alr(s,t) = 0, then we get k*k””? = 0. It contradicts the non-degeneracy of the second fundamental
form on M?.

Theorem 4. There do not exist Hasimoto surfaces in B> which satisfy the condition A'r(s,t) = 0

AIMS Mathematics Volume 8, Issue 7, 16062—-16072.
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4.3. I11-harmonic Hasimoto surfaces in E>

In this section, we classify Hasimoto surface with non-degenerate third fundamental form in E?

satisfying the equation
A"y = 0.

Theorem 5. The formula of the Laplacian A" takes the following form
-1
AHIr(S’ Z‘) = ﬁ [G)I(S’ t)T + ®2(S9 t)’] + ®3(S9 t)g] i

where

Oi(s.) = (K +7)TK" +krt” + 30k + 41K'T")

k/kNS 3TT/k//2 3T2krk//2 3T2kuk/u
+ kk//k/// _ Zk/kNZ _ _ _ + ,
K3 k k? k

O,(s,1)

sin (ﬂ(k2 + TGATK + ktk” + 127" + 4kk'T7) — Tk

k/k/IZ
v 2k = T

k//S
) —cospf (k”z(k2 +7%) — . ) ,
©s(s, ) = cos ﬁ((k2 +T)GKTK” + ktk” + K27 + 4kk'T) — Tk

3 k/kul
+ 20kK - 2

ku3
) + sinf3 (k”2(1<2 +7°) — k )

Proof. By (2.9), the Laplacian operator A’’’ of r can be expressed as

1 17 17 17
A"r(s, 1) = Wz [(K”((e22)5 — (e12)1) — k" exa + (K" )e12)rs
+  (K"((e11); — (enn)s) + kK" ern — (K" )ier)r:
+  (K'exn)rss — 2(k" ern)ry + (K" e1))ry] .

Using (3.5), we have (4.7).

Remark 2. We observe that

2 Hmean 2 Hmean ' .
(ksinB) ®;(s, 1) — T Oy(s,1) = kK1 cosf — k[ Z=2 ) gin g,
Kg Kg
(cos B) Oy (s, 1) — (sin B) O3(s, 1) = 2k’ Hypean K.
S. Stamatakis, H. Al-Zoubi proved in [14] the relation
2Hmean 2Hmean
Ay = I Ny - 2N,
Kg Kg

From (4.8)—(4.10) we have

(4.6)

4.7)

(4.8)

4.9)

(4.10)

Theorem 6. Let M? be a Hasimoto surface in B>. Then M? is I111-harmonic if and only if M? has zero

mean curvature.
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5. Hasimoto surface in the Euclidean 3-space satisfying AN = 0
In this section, we consider the Gauss map N of the surface M? with parametric representation (3.3).

5.1. Hasimoto surface in the Euclidean 3-space satisfying A'N = 0

Let r = r(s, t) be a Hasimoto surface. From (2.7), (3.3) and (3.2), we write the Laplacian operator

of the Gauss map as [16]

1 1 1
NN =-SMT - M- A58, .1

where

Ay = KK+ 1) — kT + 3K TT — kK + 2Kk,

Ay = (BT =K KK + kKT + 4kk T + 4k T — 4K K T +
Aktk’” — 4k*T* 1) sin B + (K*(K* + 27%) + (K — k1*)?) cos 3,

As = (KBt =k = KK + kKT + kK’ + 4kk't" — 4K'K' T +
4ktk” — 4k*T*1") cos B — (K* (K> + 27°) + (K" = kv*)*) sin .

Theorem 7. [16] Let r = r(s,t) be a Hasimoto surface. There are no Hasimoto surfaces in B3,
satisfying the condition A'N = 0.

5.2. Hasimoto surface in the Euclidean 3-space satisfying AN = 0
Using (3.3) and (4.4), we obtain

Theorem 8. .
AN = AT+ —
N 1 + Zklku

8 ~ 8 A
A ——A 52
2k2k// 2N + 2k2k1/ 38, ( )

where

A = k(KK —kk") = kK,

Ay = Dysinp+ D, cosp,

As = DycosB—D,sinp,

Dy = k(TR +KT7) +2t(kK” = K'K") + k7" = —k*(Kg)1s
Dy = 2k (K" = k(T* + k%)) = 4K K*H ppean.

Ny, = kT —-7sinBn—rtcospg,
k//
7—72) l]+cosﬁ(7—72) g,
Ny = KT+ (K +1°)cosf—1sinB)n—((k* +7°)sing + 1 cosf) g,

Ny = DyT+ (DicosB+Dysinf)n— (D;sinf—D,cosp) g,
Ny = D3T + (Dysinf + Dscosf)n — (Dssinf — Dycosp) g,

’7

N, = kTT+sin,8(

AIMS Mathematics Volume 8, Issue 7, 16062—-16072.
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where
2k/kl/
Do = 3kt + K@ =) = K" + ——,
k" 2k
D, = 22+ _ ’
1 (T + k%) + B .
4 /k// k/ s 4 kk//l _k/k//
D, = 477 +1kk +7" + (T l:_ T)+ « B ),
Dy = kKt+7k,
k/// k/k// ,
D, = T e - 277,
k/l
Ds = —Tk 4@ 4 k) = —2rkHpgun.
we have (5.2). O

Suppose that the Hasimoto surface has a /1- harmonic Gauss map. Then, the vector AN given
from (5.2) is zero. Thus, we have

Ké; =0, (Kg) =0, Hyean =0.

Therefore

7

—T =6 CERy K=k +T).

Case L. Suppose ¢ > 0. Then from —£ = ¢ we have k* + 72 < 0, it is impossible.

Case I1. Suppose ¢ < 0. Then k” = a’k, where ¢ = —a?.
The solution of the last equation is

k = 6,(t)cosas + d,(1) sin as,

where 0, and 9, are smooth functions on open set of R.
Hence, the equation k" = k(k*> + 72) implies that

T=eVa?-k?, e=7%FI.
Theorem 9. Let r = r(s, t) be a Hasimoto surface. A" N = 0 if and only if
k = 01(f)cosas + 5,(¢) sinas,

and

7T =¢eVa? - k?,

where € = F1 and 6, and 6, are smooth functions on open set of R.

5.3. Hasimoto surface in the Euclidean 3-space satisfying AN = 0
In [14] S. Stamatakis, H. Al-Zoubi proved the relation
AN =2N. (5.3)

From (5.3), it can be seen that the Gauss map N of M? in E? is of finite I1]-type 1, the corresponding
eigenvalue is 2. Then

Theorem 10. The Gauss map N of a Hasimoto surface M? in B’ is of finite 1l1l-type 1, the
corresponding eigenvalue is 2.

AIMS Mathematics Volume 8, Issue 7, 16062—-16072.
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6. Conclusions

In the beginning, a brief introduction and definition for the Hasimoto surfaces were given in the
Euclidean 3-space. Then, we investigate Hasimoto surfaces by using the Darboux frame and discuss
its geometric properties of it. Consequentially, we define a formula for the Laplace operator regarding
the first, second, and third fundamental forms. Finally, we classify the Hasimoto surfaces satisfying
the relations A’r = 0, and A’N = 0 for J = I, II and I11, where N is the Gauss map of M? in E>. We
distinguish three types according to whether these surfaces are determined, with each type investigated
in a subsection of section 4 and for the Gauss map in Section 5. An interesting study can be drawn, if
this type of study can be applied to the general definition of surfaces of finite Chen k-type.
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