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Abstract: The construction of efficient numerical schemes with uniform convergence order for time-
fractional diffusion equations (TFDEs) is an important research problem. We are committed to study
an efficient uniform accuracy scheme for TFDEs. Firstly, we use the piecewise quadratic interpolation
to construct an efficient uniform accuracy scheme for the fractional derivative of time. And the local
truncation error of the efficient scheme is also given. Secondly, the full discrete numerical scheme
for TFDEs is given by combing the spatial center second order scheme and the above efficient time
scheme. Thirdly, the efficient scheme’s stability and error estimates are strictly theoretical analysis
to obtain that the unconditionally stable scheme is 3 — 8 convergence order with uniform accuracy in
time. Finally, some numerical examples are applied to show that the proposed scheme is an efficient
unconditionally stable scheme.
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Nomenclature

u: Change in temperature (K); f: The heat of source (K/s); x: Change in space (m); #: Change in
time (s); A: Region; T: Maximum time; 8: The order of fractional derivative of time; on : Fractional
derivative of time in the sense of Caputo; 3*: The second derivative of space; At: The step of time (s);
h: The space division step size (m); K: Maximum number of time divisions; N: Maximum number of
space divisions
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1. Introduction

Fractional calculus is widely used in natural phenomena because many problems in engineering
and science can be well described by fractional differential equation model. Recently, the research of
solutions and numerical solutions of fractional differential equations is a very important research topic.
For instance, finite difference method [1], spectral method [2, 3], wavelets method [4], etc.

In this paper, we consider the TFDE as following form:

0Dfu(x, 1) = Fou(x, 1) = f(x, 1), (1.1)

with the initial and boundary conditions as follows:
I/l(x, 0) = MO(X)a (12’)
u(a,t) = ulb,t) =0,0<t<T, (1.3)

where T > 0,0 < 8 < I,A = (a,b) and I = (0, T]. The Caputo fractional derivatives ODf u(x,t) of B
order in (1.1) is defined by

1
I'(l-p)

where I'(-) being Euler’s gamma function. It is easy to see that the Caputo fractional derivative can be
understood as the weighted integral average of the classical derivatives in the past time. This means
that the change rate of function at the current time is affected by the past time. This property is
useful to describe some materials mechanical behaviors. Therefore, the study of numerical algorithms
for TFDE has attracted many researchers. In [5], an alternating direction implicit scheme was used
to solve the TFDE of 2D with Dirichlet boundary condition with initial weak singularity solution
by L1 scheme on uniform mesh. In [6], it proposed a novel stability and convergence numerical
scheme for TFDE with a(1 < a < 2) Caputo fractional derivative. The stability and convergence
L2 type numerical scheme of the Caputo fractional derivative was constructed in [7]. A high-order
convergence compact finite difference method for solving the TFDE of 2D was constructed in [8] by the
L1 approximation with operator-splitting technique. In [9], they used L1 and L2 type approximation
to construct a high order stability and convergence numerical method for the TFDE with rigorous
analysis. In [10], it used Legendre polynomial to solve nonlinear fractional diffusion equation with
advection and reaction terms. In [11], they constructed a space-time Petrov-Galerkin spectral method
for TFDEs based on eigen-decomposition. In [12], it used the spectral collocation methods to solve
distributed order TFDEs. In [13], they used the Legendre spectral tau method to solve the multi-
term TFDEs and gave the error estimate and rigorous convergence analysis. For efficient numerical
scheme constructing, an popular numerical method is based on sum-of-exponentials technique [14—16].
Many researchers use non-uniform grid or graded grid numerical schemes to solve problems when the
solution of TFDE is initial value singularity [17-21]. In [22], they proposed an approximate spectral
method for the nonlinear time-fractional partial integro-differential equation with a weakly singular
kernel by using new basis functions based on shifted first-kind Chebyshev polynomials. From partial
integro-differential equations, an efficient alternating direction implicit scheme were constructed for
the nonlinear TFDEs in [23]. Based on the block-by-block method, a new general efficient technique

oDlu(x, 1) =

!
f (t =) P0u(x,7)dr,0 < B < 1,
0
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to construct efficient numerical schemes for the fractional derivative was constructed in [24, 25].
In [26], it presented finite difference and finite element scheme for space-time fractional diffusion
equations. In [27], the time-stepping spectral method for the TFDEs was constructed by using the
temporal second-order difference scheme and spatial spectral method discrete. In [28], it gave an
efficient numerical scheme for the variable coefficient multiterm TFDE by the Crank-Nicolson method
in temporal part and the exponential B-splines in spatial part with the unconditional stability and
convergence rates analysis. Readers can refer to more references such as [29-31]. In this paper, we
construct an efficient numerical scheme for TFDE with uniform accuracy by block-by-block approach
to overcome the lack of the theoretical convergence order at the initial time of the above algorithms.

The organizational structure of the rest article is as follows: We first describe the time discretization
for the time-fractional derivative and derive a sharp estimate for the truncation error in Section 2. In
Section 3, the full discrete numerical scheme for TFDE is given by combing the spatial center second
order scheme and the efficient time scheme of Section 2. In Section 4, the efficient scheme’s stability
and error estimates are strictly theoretical analysis to obtain that the scheme is unconditionally stable
and 3 - convergence order in time with uniform accuracy. Some typical numerical examples are given
to show the effectiveness of numerical algorithm in Section 5. We provide some concluding remarks
in the final section.

2. Discretization in time: a finite difference scheme

In order to simplify the symbols without losing generality, we set f(x, ) = 0 during the construction
and analysis of numerical scheme. Now, we construct an efficient high order scheme for the fractional
derivative in time, and divide the interval (0, 7] into K equal subintervals with At = %, = kAt k =
0,1,--- K.

Next, we discuss the numerical scheme for time-fractional derivative on u(x,t) in (1.1). Firstly, we
determine the values of u(-,f) on #; and #,. The approximate formula of u(-, 7) on the interval [#, #,] is
given by Lagrange interpolation [32]:

][t(),tz]u(" t) = l/l(', t())(DOO(t) + I/l(', tl)(D]Q(t) + l/l(', IZ)(DZO(I)’ (21)
where @; () is defined by

(t-1)t-1) _

5 -1t —-1n) _
(to—t)to—1)

_ 5 (=) —1)
(t — o)ty — 1) 2°

C(h—t)ta— 1)

®

0

W o(1) =

When k = 1,2, based on (2.1) we can approximate ODf u(x, ), OD,B u(x, ;) by replacing u(-, t) with
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Jito.u(+, 1) as following,

1 g
oDPu(x, 1) = B fo (t1 — 1) PO.u(x, T)dt

N 1
I'(t-p)
= BO’Ou(x ty) + Bl’ou(x H)+ Bz’ou(x 1),

1]
(t1 = T) PO (Jy 1yu(x, T))dT
0

2.2)
ODfM(X, L) = F(l —,3) f (t, — 1) 9 u(x, T)dt
- F(t——/ﬁ’) f; (12 = 00 (Jygyyu(x, D)dT

0,0 1,0 2,0
= By u(x,t9) + B, u(x, 1) + By u(x, tp),

where

i,0
B]

ra—ﬁxf(“-ﬂﬁwvarz_aLz

i.0
BZ

I'(1 —,3) L (&2 = T)_ﬁa);,o('f)dﬁi =0,1,2.

Divide the integration interval into several subintervals, one can obtain OD,B u(x, ) for k > 3 as
follows:

1 * 0u(x,T) .
' -p (i —7)F

" O.u(x, T) L f’-"*' O-u(x,7)
dr].
Hl—ﬁfj‘(&—fﬁ 2; G-

J

thB u(x, t)

For every subintervals [¢;,7;.1],j = 1,2,--- ,k — 1, the approximation of u(x, ) is as follows:
U 1) = u(:, tj-Dwo (1) + uC, 1wy j(t) + u, tj.)wo j () = Jp 4 U 1), (2.3)
where w; ;,i =0,1,2;j=1,2,---k — 1 are defined by

(t =t —1j41) W) = (=t ) —1j51) Wa (1) = (=t ) —1t)
(tio —t)(tjo) — tj1)’ b (tj = tio)t;—tjw1) 2 (tjis1 — tjm)(tjs — 1))

wo, (1) =

Similar to (2.2), based on (2.3) for k > 3, oDﬁ3 u(x, t;) can be approximated by replacing u(:, ) with
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J[t,-,t_,~+1]u(" 1) in every [t;,1j.1] as follows:

_ 1 " Ou(x, D, Y Ou(x, D
Ol)zﬁu(-x5 tk) - 1—*(1 _ﬁ) [\fO‘ (tk - T)B Z f (tk - T)ﬁ

Zj

1 g
" Ta —ﬁ){fo (1 =D V(0 d7

k-1 lj+1
S =0 PV dr) 4

j=1 Y1
= Bg’ou(x, to) + B}(’Ou(x, H)+ Bi’ou(x, 1)
k-1

+ Z[Bg’ju(x, ti1) + B u(x, 1)) + B u(x, 1)),
=1
where
BZ’O = ) —,3) f (t — 1) Bw,O(T)dT i=0,1,2,
T 1 1j+1 5
Bl. = - t_ __," d,.:()’l’z;‘:l,z"..’k_l'

Combining (2.2), (2.4), let By = I'(3 — B)A#*, one can immediately obtain the efficient scheme for
OD,B u(x, t) as follows:

,801 ( ou(x, ty) + Dlu(x H)+ Dzu(x tz)) =1,
Bo" (Dou(x. to) + Dyux, 1) + Dyu(x, 1)), k =2,
oD u(x, i) =48, ! [ wu(x, 1) + Bku(x )+ Cku(x 1) (2.5)
k-1
+ (Aju(x, tk—j—l) + le/t(x, tk—j) + le/t(x, tk—j+1))] s k> 3,
J=1

where

D; = (38-4)/2,D; =2(1-p),D, = /2,
Do = (38-2)/2°,Dy = —4/2°, D, = (B+2)/2",
Ac=Q-Bk—1D'"P12-3Q-pk' P12 - (k= 177F + k>,
By =22 - k' P +2(k — 1> = 2k*P,
Ci=-Q-BI'P+k-1""1/2+K7F - (k- 1)*7,
Aj=-Q-BlG-D"P+jP12-(- 1P+ /7,
B =2[2-B(- D' +(j-1)F - 7],
Ci=-32-PG-D"F2+2-BjF2-(-1VP+F
In the following Theorem 2.1, we give the error estimate to proposed numerical scheme (2.5) of
fractional derivative.
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Theorem 2.1. Suppose u(-,t) € C*[0, T] and denote
r(Ar) = onu(x, ) — oDy u(x, ), Yk > 1,
then
lr(AD| < CLAPP0<B < 1, (2.6)

where C,, is a constant and only depending on the function u.

Proof. Based on the Taylor theorem, one can obtain the residue of (2.1) as follows

1 8u(x, £1)

l/l(x, t) - J[l‘(),l‘z]u(x’ t) = 6 (9Z3

(t =) — 1)t —1ty), Vi€t ], (2.7)

where &(t) € [to, 15].
Firstly, we will use (2.7) to estimate the case k = 1 of (2.6) as follows:

1 1 1)
n(n| = |r<1— 5! fo (ty = D) Pdeu(x, T)dr - fo (1 = T POy e, DT

r(lﬁ_ ﬁ)' f Uk T)_'B_] [u(x, 7) - J[;OJZ]M(X, T)]dT‘
! 53”()6 §(T )
or'(l — )’f (T—0)(T—10)(t1 — 7) ﬁd‘r|

B 63u(x, nH. (" i
6T ) X |—a 1) (2 =D~ Frdr

B Fu(x,1), 5
= AP
3G A —p) oix =55 |
< C,APP.

Secondly, the estimate of the case k = 2 of (2.6) is similar to k = 1, so the proof process is omitted
without losing generality.

Thirdly, based on the direct calculation it is easy to split the estimate of the case of (2.6) for k > 3
into two parts in the following

In(AD)| = |0D‘*u<x 1) — oD u(x, 1)

= F(l —,3) f (t, = 7). [u(x,7) — it u(x, T)ldT

{j+1
+ Z f (te = )P0 [u(x, 7) = Jyy 1, qu(x, DdT
i=1 V1
= |M+ N|.
Repeating the similar proof process of |r;(Af)], one can immediately obtain the following estimate

M| < C, AP (2.8)
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For the estimate of the second part N of |r;(Af)|, using the Taylor theorem one can obtain

IN| = (= ﬂ)‘;f (tr — 1) :3(? [u(x,7) — ][f/fm]”(x T)]dT'

B m_ B) Z f =00, 7) — Ty, Dl

+ f (te = 1) PO [u(x, T) = Ty, u(x, T)]dr‘

tj+1 83
) Zf u(x, f(T))( —1)(T = 13T — i)t — T)7F

6r(1 - ﬁ)
Ti a% . -
_f u(ax—f(‘r))(‘r— 1T = t-)(T = fr2)d(tx = 7) ﬁ'}
k-1 T

V3B
————— Inax
27T(1 — B) rel0.1]

IA

i+l
Cu(x, t)|At3 f (ty — )P ldr

Ij
Tk
3 A2f _ —ﬁd
* T~ 16° u(x,t)l' t z,(tk ) Pdr
B

S VB _B
2701 - pB) t€[0 T] 6I'(1 —pB) ze[o T]

mxnpﬁﬁ+

Su(x, t)‘Ats 8| (2.9)

In the above proof, we use |(7 —;)(7 =, )(T — t;_1)| < %AP. Combining (2.8) and (2.9), one can
get the following conclusions

Ir(AD)| < C,AP Pk > 3.

To sum up, the proof of Theorem 2.1 is completed. O
3. Full discretization

For convenience and generality, we divide A = (a, b) into N equal parts and denote /& = , and
x; =a+ jh,j=0,1,--- ,N. The numerical solution (1.1) at (x;,#) is denoted as u’j‘ We use the
following differential notations

ko ok u_ukl

u., u.
()= Tt ()= = (3.1)

Similar to [16], for the sake stability and convergence we introduce the discrete inner product and
norm as follows,

=z

ko k k. k k ko kyx
Wy =y ubvih, bl = @, i),

1l
—_

J

@ 4T = ) uhh, I = @2, (3.2)

.MZ

1l
—_

J
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N-1

k Kk k. k k k kg
[ V) = > ulvAn, ) = [, )

=
Though direct calculation, it is easy to prove the discrete Green formula:
Uk VE) = ubh, — ok — (k). (3.3)
Letu = y,v = zz, the Eq (3.3) immediately becomes
0", (2 = (" = "o — 04, 4. (3.4)
Therefore, using (3.1), the second-order central difference scheme in space as follows:

02u(xj, lk) _ (u§+1))'c - (ul;))'c
ox2 h

+ O(h*) = (uf )x + O(h). (3.5)

Combining (2.5) with (3.5), one can immediately obtain the full discrete scheme for TFDEs as
follows:

Do + Dyul + Dyu? = Bo(ul ), = 0, k=1,

Y > WL S Y 2

D()Mj+D1Mj+D2Ltj—ﬂ0(bti’j)x:O, k:2,
k-1

A0 R ,2 k—i—1 k—i k—i+1 =1,k

Al + By + Ctd + ) (A= 4 Bal™ + Calk 1) = BoCr 0k ), = 0, k> 3.
i=1

(3.6)

In order to analyze the numerical scheme (3.6), we firstly rewrite (3.6) for £ > 4 into the following
equivalent form

k
wh+ BoCT Gk ) = ) df T, 4 <k <K, 3.7)
i=1

where

di = —CY (A + A1), df = —C7'(Agoa + By + By),
d8 = —C7'(Cy + Ar-s + Bia + Croy),

k I . (3.8)
di_,=-C (A1 +Bi+Ciy),i=3,4,-- k-3,
d]/:_z = —Cl_l(Al + By + C3), d]lz—l = —Cl_l(Bl + Cy).
Similarly, we secondly rewrite (3.6) for k = 3 into the following equivalent form
i)+ BoCr Uy )x = douts + diu's + dgul), (3.9)

where
d3 = -Ci'(C3+ B, + Cy), d} =-C;' (B3 + A, + By), di =-C;'(A; + Ay).

According to (3.7) and (3.9), the full discrete scheme of (3.6) can be rewritten as the following
equivalent form

AIMS Mathematics Volume 8, Issue 7, 16031-16061.
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Do + Dyu' + Dot — Bo(ul ), = 0, k=1, (3.10a)
Do + Dyul + Dot — Bo(u3 ), = 0, k=2, (3.10b)
)+ BoCr' () ) = dous + diju + dyu), k=3, (3.10c)
i+ BoC ), = Zd’,jl W, k>4, (3.10d)

Before carrying out the full discrete scheme (4.1)’s stability and convergence, the properties of the
coeflicients d,’g_i will be analyze firstly in the Lemma 3.1.

Lemma 3.1. Forall 0 < B < 1, as k > 4, the coefficients in the scheme (4.1d) satisfy
() € =% 3.2,

k
(I Y di =1,

i=1
(111) d,f_i >0,i=3,---,k
(1V) 0 < d’,;_l < ‘3—‘,
(V) d’,:_z there are positive and negative,
(VI) d’g_z + }L(al’,;_l)2 > 0.

Proof. (I) Based on the direct calculation, it is easy to prove directly.

(IT) Based on the fact that the fractional derivative of the constant is zero, one can prove it
immediately by combining (2.5) and (3.8).

(IIT) For k£ > 4, we can easy to observe that

2-Ais1 =B —Cis1) = (B+DIE-2'"P-3-1D'"P+3i'"P -1 +0)'7]
12 =2*P —6(i— D*P +6i*P = 2(1 + )* .

Denote i — 2 = i for i > 6, and we use Taylor formula yields
—2(Ai-1 + Bi + Ciy)
- 1 2 3
= PPQ-BUI =301+ 2P 431+ -1+ )
i i i

F2 =603 + 1P+ 6(1 + 2)2F = 2(1 + D7)
l l l

- 1
= iPQ-p1 =301+ —ﬁ)(:.) +...

Hﬂﬂbmé+L£&&%+ ]

{Hﬂ%ﬁ)ill@& 1
P61+ 2B+ 9—%%—@§Y+”J

wuuzmu+9£&JZ%+}

2!
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2 1- 3
1+ ﬁ)( )+ (ﬁ;—(,ﬁ)q P!
= —p2-pd1 —ﬁ)?_z_ﬁzak +2BQ2 - B)(1 - p)i ' *, (3.11)
k=0
where
k —-3(6+ k) +24(8 + k)2" —-27(10 + k)3k
_ _ k
o= iz ﬁ)( ) (k +4)! '

i=0

It is easy to check that Y}, %) a is an alternating series with a positive first term by carefully calculate,
and we have 0 < ;5 a; < 4(B + 1). Therefore, we have

“2Ai1 +Bi+Cir) > —BR-P(1 =P 4B+ 1)+2p2-p1 -pi "7
= 282 -B)(1-Bi P2+ 1) +1] > 0.

Similarly, based on the directly calculating it is easy to prove as follows:

U-Ar—By—C)=4-B+BB—18)21F + (24 - 383 P + (B 1041 > 0, i = 3,
2—As—Bs—Cs) = (6-B)21F + (38— 24)31F + 30 - 3/)41 B + (B-12)5'F >0, i =4, (3.12)
2—As — Bs — Cg) = (8 = B)31F + (38 — 30)41# + (36 — 38)5!F + (B— 14)6!F > 0, i = 5.

Combining (3.11) and (3.12), one can easily obtain that

1
d]lz_i:_z—ﬁ(Ai—l+Bi+Ci+])>O,i:3,--- ,k_3‘
T2

For dlf =—(Ap2+B_1 + Bk)ﬁal, we let W) = —(Ajo + By + Bk), then

Wi = 224 pk=2"" ~ 22+ Bk 3P + 22 + PP
+(k = 3)* = 3(k - 2)*# + 2k*P.

Let k — 2 = k, we use a Taylor expansion and get following as

Wi = 224 pRP 4 Q- Bl D F - 22 - pR+ B

+H(=1+ k)P - 3*F + 22 + k)* P

1- 1 -B)(=p(--1) 1
- o ﬂ)kl_ﬁ{z( oLl /3>() (1B 5)(/3 >(z)3+__,]

1 -B8)(-p) 2 1- -L-1) 2
( ,3‘)( ﬁ)( ) L /3)( f')( B - )( P
(1 ﬁ)( B 1 (1—ﬁ)(,3)(/3’+1) 1

+2 - PR~ (= ) a0 (z) -

1 -p(=p 2 (- ﬂ)(—ﬁ)(—ﬂ -D 2,
T(Z) + 0 (z) +-- 1

-2[

+2
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where

a, =

+00 n

Therefore, Z l—[( i— ,8)( ) - a, is an alternating series with a positive first term and satisfy

n=0 i=0

1
2-p)1 - ﬁ)k“Z—H’ P () [ =2

(n+2)!
A (=B =) 1
— - B-1 izt P — Y n+3 n+4
+2 -1 - )k Z TR U
2 - B)(1 - Bk ‘Zﬂ(—ﬁ—:)( ) a
n=0 i=0

D'+ D=8-2"(n+ 1) (n+ DI(=1)" =2
(n +3)! B 2-(n+3)!

< 0.

+o00 n

D =i ,3)( Y- ay > 0.

n=0 i=0

For d§ = —(Ck + Ay 3+ By + Ck_l)ﬁal, taking W, = —(Ak_3 + B, +Ci_y + Ck), we have

Wy = S(B+DRP+ SB+ 2k -2"F ~ S(p+ 2k~

+%(—ﬁ +2)(k =)' P + 3k - 2> = 3(k - 3)*F + (k- 4.

Let k — 2 = k, we still use Taylor formula and get

W, =

AIMS Mathematics

2D+ Q- PR - 22 - pik- 1)
2 2 2
+1(2 - Bk - 2)1-/” —(k+27P +3k7 =3k - 1Y + (k- 2)**
(2 Pk — (2 - Pk (1 - ) T (2 - PK (1 - i)
1
Z02=BRk'B -8 P28 _ 32 B — )28
+2(2 Bk (1+l€) + 3k 3771 12)

R 2 . 2
+k*P(1 - E)H P+ 7)2—/3

3. =pB) ﬁ) 1, A-=-BEAEE-1 1

R 5 (4]

1 A=-5(P) 2, (A=-BHEE-1) 2
(- 5 (]

1 (A-B)(=p) 2 —B(B(=B-1) 2
LT Y 3 @7+ 1)

22 (1 BB 1, (- ,3),3(,3+1) 1
— PP 3

+2 =Pk =3, (IE) 0 (k) ]

Volume 8, Issue 7, 16031-16061.
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(1 ﬂ)ﬂ 2 -B)BB+1) 2

H—7m (= ) A ( =]
_[(1—?(—,6’)(2) (1_ﬁ)fvw+l)(i) )

= 2-B)1- ﬁ);z—ﬁ—lg; szlg(;l;)! l)(;c) Sy
+%<—2)"+2 +2" )+ @ =B - P! f; —H%j(j;j ”(%)”

[3(_1)n+4 + (_2)n+3 2n+3]

+o0 n

= Q-pa-pk*t Y | |8~ )()

) (+3)'

where
3 n+l1 n+1 n 5
= 5(—1) m+D)+2" (mn+ D1+ (D"], by = 7 b, = 3.

Asn>2,b, <0forodd numbernand b, = (n—-1)[4-2" — %] — 3 > 0 for even number n. It is easy
to verify that by and b, are all positive. Therefore, it is an alternating series for n > 2, i.e.,

11 3
0< Z ﬂ(—ﬁ -z >" ), by < =57 (B) + BB~ .

n=0 i=0

Therefore, we have

ds =

—(Ay3+B >, +C+C - —-B,_,—B
(Ag3 + By + Ciy k)>0’d11(: S0

B B
2-5 2-%

(IV) According to (3.8), we have

34-p)+B-6)-2'F

d]/z—lz 4_ﬁ

Therefore,

g 4 _S4-p+3p-6n'F
R 3(4 - p) '
Let f(B) = 5(4 — B) + 3(8 — 6)2!7, by carefully calculate, we have
B =-5+3-2"7+3B-6)-2'F(-1n2),
f"(B) =3-2*P(=1In2) + 3(8 - 6)2!#(In2)*> < 0.

Therefore, f'(B) is a monotone decreasing function and f'(1) = 15In2-2 > 0,0 < f'(1) < f'(B) <
f'(0). So f(B) is a monotone increasing function and f(0) < f(8) < f(1) = 0. To sum up, we obtain
isd . >0.

3 7“1
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We take g(8) = 3(4 — B) + (B8 — 6)2! 7P, due to

gB) = -3+2'"7+(B-6)(~1n2) 2P,
g’ B = 2°P(=In2)+ (B -6)(-1n2)*-2'* <0.

We can deduce g(B) is a monotone increasing function and 0 < g(0) < g(8) < g(1). Therefore,

k 4
0<d_, <3

(V) As k > 4, we have
36-2)-(@4-531F+©9-Lp'#
2 —

A () palB PSR
4—,3[ 3-B-@-=p3 7" +3(6-p)2 ]_4—ﬁf(’8)'

d, = —~C/'"(A1+By+C3) =

[STReN

Next, we discuss the sign of the f(8). V5 € (0,1), 4 — 8 > 0 always holds. So the sign of the d’,;_2
is determined by f(5). After calculation, f'(0) > 0, f’(1) < 0. Therefore, f(5) increases first and then
decreases and f(0) = 0, f(1) = =1 < 0, we know f(B) has only one zero g € (0, 1). Furthermore,
when B € (0,5;), f(B) > 0. When 8 € (B, 1), f(B) < 0. That is, d}_, has positive and negative on
Be(0,1).

(VD) The following equation can be obtained through direct calculation

1

1
) +dis = 2= fB). (3.13)

where
fB)=-3(4-p*+6(4-B)6-p2'7" -44-pB8-B)3'F +(6-p7* 4.
According to Lagrange mean value theorem, we have 47 > ﬁ - 3178 and

fB) > =3(4-p) —6(4-p)(-6+P2'F +44-p)(-8+p)37

_ 2 4 s
+(—B + 6) 345 3

1
= aj+a- 2P +a;- 2P0+ 5)1-5

= a1 +2"Pay + as[1 + %(1 -8+ W(%)z]
1=B)Y=B)(-B-1) 1
+a3_[( B)( 3,3!)( B )(5)3+...]}
S -1 1
= ay + 2" {a + asas + as(1 —ﬁ)ﬁkz_; (-8 —1—i) i (5)k+3}

+00
= +2Pla +ay-as+as(1-PB ) by,

k=0
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where

4
a;=-34-B°, a= m[_@ -PB =B+ + (6Pl

-8 (1-p8)(-pB) 1
w=64-p6-p). a=1+L LDy

_ k 1 k+3
bk— '(oligll)llﬁ) (k+2)‘(2)ﬁ -

—(= ktl, P teo+
== — G >0 15 =l="0 s <

So ;50 bx is an alternating and convergent series, i.e., 0 < >.;5) by < by, we have

+00
ar+2'Play +as - ay + asB(1 = B) D bi)

@B >
> a;+2"Play + a3 - a4 + as(1 —ﬂ)ﬂbko:}o
= @+ 2P+ aslas + (1~ P+ /3 1)<1)]}
= a; +2"Play + a3 - as] = fi(B),
where
as=ai+(1—p)- —(—,8 1)(1) 48+24(1—,8)—6([>’—B2)+(ﬂ—ﬁ3)'

2 48

It can be obtained by careful calculation, we obtain

fiB) = a +2"Play + a; - as]
-36

= mW —58% — 83 + 48]
+%[ﬂ6 — 168’ + 978" — 278B" + 885% + 732 + 864]
- m[—%(ﬁ — 58> — 88 +48) + 2! P(B° — 168° + 978*
—2783° + 8852 + 73283 + 864)]
= 12(31 ﬁ)ﬁ(ﬁ)

Next, we estimate (8). YB3 € (0,1), 82 < 52,5° > 0, we have

FB) > —36(8>— 58> — 8B +48) + 2180 — 168° + 978* — 2788
18862 + 7328 + 864)
= 1448 + 28— 12) + 21 B(~168° + 978" — 27883
+883% + 7328 + 864)
= 144(8% + 28— 12) + 2! - fu(B) = f3(B),

where

f1(B) = —168° + 978* — 2788° + 885> + 7328 + 864.

(3.14)

(3.15)

(3.16)
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After careful calculation, f;'(8) < 0. Therefore, f;(B) is a monotone decreasing function, so f;(0) >
£B) > f(1). Similarly,

£B) = 14428 +2) + 2" P[fu(B)(= In 2) + f1(B)], £3(0) > 0, f3(1) <O,

we find the sign of f](8) become positive to negative, i.e., f3(8) increases first and then decreases.
f3(0) =0, f5(1) = 191 > 0. Therefore we prove

f(B) > 0. (3.17)
Combining (3.14), (3.15) with (3.16), (3.17), we have f(8) > fi(B) > fs(8) > 0. From (3.13), we
find
%(dllz—l)z +d;_, >0, €(0,1).

To sum up, we already proved Lemma 3.1. O

Remark 3.1. From Lemma 3.1, the coefficient d,’;_z has positive and negative on € (0,1): When
B € (0,8, di_, > 0; when B € (85, 1), d,’j_z < 0. This brings great difficulties to the convergence and
stability analysis of the proposed scheme, and the classical theoretical analysis method are invalid.
Therefore, here a novel technique for the stability analysis ¥ € (0, 1) will be given.

Next, we will introduce a technique for numerical scheme (4.1):

p= %d,’;_l. (3.18)
By recombining of the Eq (4.1d), we have
= pu™" + BoCy (0t ),
= p(u ’; pu ) + (07 + di_ s + di_yus 7 + -+ diu)
= PGl = pu) + (0" + di )W = pu ) + (07 + pdi + di ) = pu)

+ (P + N, + -+ pds + d5) (W — pu)
+ (0T P, 4+ pdy + dY) (- pu)
+ (" + "y + -+ pdy + du).
Next, we denote
L=p +Zpl Idf_i=2, k. (3.19)
=i _ ., i—1 .
uj—uj—puj , i=1,--- k. (3.20)

Thus (4.1d) can be equivalent as follows:
k—i ]

itk — BoCr (), = pitt™" + Z di i+ dll, k> 4. (3.21)

In the following Lemma 3.2, we give some good properties of the coefficients in numerical
scheme (4.1).
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Lemma 3.2. When k > 4, YO < B < 1, the coefficients in numerical scheme (3.21) satisfy

() 0<p<?2
(1) &, >0,i=2,3,--- ,k
k-1
(111)p+Zc7§_i+J§s 1.
i=2

Proof. (I) According to (3.18) and (IV) in Lemma 3.1, we immediately give the estimate for p.

(II) Asi =2, we have
di s =di ,+p* =di 5+ %(dllz—l)2'
According to (VI) in Lemma 3.1, we get d;_, > 0. Furthermore,
di i =di_p+di_i=3, .k
Because of p > 0 and (III) in Lemma 3.1, we obtain

di . >0,i=3,4,-- k.

k-1
(III) Let P, = p + Z a?’,j_[ + j{;, we can obtain from (3.19) that
i=2

k-1 k=2 1

Poo= pY pled, Y pletd Y pl+d
i=0 i=0 i=0
1-p¢ L 1-p"! L1-p L l-p
= +---4+d +d + d,.
Pl_ k=27 21—p ll—p 0

That is,

Pl =p) =1 =pYp+ 1 =p"Ndi+---+ (1 = pH)d} + (1 - p)d.

Then, we use (II), (IIT), (VI) in Lemma 3.1 gives
k
Pl-p) < (1=p%p+(1=-pNdf,+ Z dt_,

- (p+2d’;l> (di,+ P!
- (- (i, + P < (1 =p).

k=1
Therefore, we already proved p + Z d’k‘ + dk <l

As k = 3, the equivalent of (4.10) as follows:

i +BoCy (4} )y = dyit” + djia + dyit°,

(3.22)

AIMS Mathematics Volume 8, Issue 7, 16031-16061.



16047

where
& =d-p,d =dip+d;,d,=dp+d. (3.23)

We find p # d; — p. So we will give some properties of the coefficients in numerical scheme (3.22)
in the following Lemma 3.3 as k = 3.
Lemma 3.3. The coefficients of (3.22) have the following properties when 0 < 8 < 1 and k = 3,

() & >0,i=1,273
() &3 -p <0,
() &} + d} +dj < 1.

Proof. (I) Let’s firstly prove that,
d>0, d,>0, di>0. (3.24)

Based on calculating carefully, one can immediately obtain that

B_ 2 B 1 _ _l (§_3)21_ﬁ
dy = plo-G+3 /3] 2[3+—2_§ ]
_ 3, 4+Bas 6-B,
T2 p-4  p-4
§_fw 2 318
(G537 >0

Because of d; = ; ,8[(2,8 2)3'P -6+ 2B, s0

- S6-4 i, GEPO-B) 15 15 O-PF)
4 4+2<4 B a-pr 0 et
= —Z+a1-3 Fray-37P2F 4 ay 27,

where

SB-4 6-pE+p) _ (6-p°

a) = a) = , a3 (4—,8)2

2(4-p 4-p)y
Next, using a Taylor expansion yields
- 3
& =-gta 2171 + )1 ﬁ+a2 2171 + 2)1 PP ray 27

3
= —Z+[a1-2 P yay- 2 2/f](1+ )1ﬁ+a3 2%
3

_ - -pl  dA-p(p 1 _
= —Z+[a1~215+a2-21 2'3][1+ TR 5 (§)2+--~]+a3~22'8
= —% +a - 2"Pvay 2" v gy 27

+a 2" +ay - 2“51[%(1 -B)+ “‘f#(%)z +---1.
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Next, we will estimate a; - 2'# + a, - 2172 > 0.

2B
ar-2"P+a, 217 = G- B)2 ———[(58—4)(4 - B) + 2(4 + B)(6 - B)27F]
> a—pr [(5B-4)E4-B)+ @4 +B)6-p)]
2B
= G/

where f(B) = (56 —4)4 — B) + (4 + B)(6 — B). Because of f'(8) = 26 — 128 > 0, f(8) monotonic
increase, f(5) > f(O) =8>0,s0 f(,B) > 0.

Because of 11_—,[3 3+ (1_'6)( 0 () + W( > + - = Y% ai is an alternating series with
positive first term, and Y% ak = do+ar+ e Ars where Z 12> G 1s an alternating series which the first

term is positive number, so 0 < >, a; < a,, and

3

d; = gt 2 g, - 21—2ﬂ tas 2P
e 2y 2 FY - %(%ﬁ 1 |
= _g + as .22:B + [a; - 2! B a2+ 5(1 _B)+ #(E)Z]
= It a_gli®+ L)

where

fi(B) = —192 + 3688 — 1968° + 498° — 53,
f(B) = (144 — 483 - 27 +18° - g2 7.

Next, we will prove d3 > 0, that is —= + 8(4 ﬂ)z LAB) + L(B)] > 0 = fi(B) + L(B) > % 8(4 —
B)?2P = 6(4 — p)*2P, that is f1(B) + fz(,B) > 6(4 — B)*2F = 6f3(B). So to prove D > 0, just prove
fi(B) + f-(B) — 6£5(B) > 0. Let’s remember f(B) = f,(8) + f»(8) — 6£3(B). Since f(B) is an increasing
firstly and then decreasing function, and £(0) = 0,f(1) = 16 > 0, so f(8) > 0, therefore J‘? > 0.

Because d = [2 — (3*7# + 1)§] >0,s0d; =d;p+d; >0.Tosum up, (3.24) is completed proved.

(IT) Because of

&b-p = d-2
3 (532"

2 6Bty BT
- ,8[6 G+237P =3P -3+ 251 <0

2

Thatis d; —p <O0.
(IIT) According to (3.23), we have
d+di+dy = d-p+dip+di +dip+d;
= d—p+(ds-pp+d +(d5 - p)* +pd; +di
= (& -p) (1 +p+p’)+Di(l +p) +D;

1-p>  1-p* Ll-p

= (@ -p) +d—L &
l-p

= Ps.

1- °1-p
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Therefore, we have

(1=p)P; = (dy - p)1=p))+di(1 = p*) +dy(1 - p)
= (d+d}+d5-p)—(d5 - p)p’ —dip* —dip (3.25)
< (dy+di +dy —p) - (dy - p)p’ - dip?

(dy+d} +d5—p)—p*d; <dy +d} +d; - p,

where d} > 0, d; > 0. By carefully calculate, we have d; + d; +d; = 1. According to (3.25), we obtain
(1-p)P;<1-p,ie.,

d+d +d; < 1.
The proof is then completed. O

4. Stability and error estimates

From (3.21) and (3.22), thus the equivalent of (4.1) as follows:

Dou’ + Dyl + Do — Bo(ut ), = 0, k=1, (4.12)

Do + Dyu' + Dot — Bo(u2 ), = 0, k=2, (4.1b)

)+ BoCr (3 ) = douts + diu + djul), k=3, (4.1¢c)
k

s+ BoCT Gk ) = ) df ™, k> 4 4.1d)
i=1

We will give the estimation of ||i'||3 + BoCy ' lut]l%, @25 + BoC ' luz]|* as following Lemma 4.1,

Lemma 4.1. Letﬁ = min{—D,D,, D,D,, —D;, D,} and @ = max{D,D,, | — DoD,|}, we have

{ lli'115 + BoCr luz]* < Mollull5, (4.2)
1115 + BoCy uz]lP < Mollu?|[5, (4.3)
where My satisfies
a, 2 o @0 2
M, = maX{S(E) +2p ,S(E) (1+p9)}) (4.4)

Proof. Multiplying —Eu;h on both sides of (4.1a) for k = 1 and taking the sum over j, one
immediately gets

—DoD(u°,u") = Dy Dy (', u") — D2D; (1%, u") = BoDy ||l 1P = 0. (4.5)

Multiplying Eufh on both sides of (4.1b) by for k = 2 and taking the sum over j with (3.2), one
immediately gets

DoDy(u°, u?) + Dy Dy (u', u?) + DoDy(u?, u?) + BoD || = 0. (4.6)
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Add Eqgs (4.5) and (4.6) correspondingly, one can obtain by combining similar terms,
=D\ D[l I[; + D2Dall’lly = BoDilluf ] + BoD2llu] = ', DoDyu' — DoDaus®).

Because of —Z)Tﬁ; , 5;1/)\2, —Z)T , 5\2 and 1/)\051 are all positive number depend on g, therefore E >
0, > 0, we have

112 212 112 2112
llue{fo + Ml llg + Bollugll” + Bolluzll

—

a. o 1 2 a g 1 2 1 2
< =l ol [lo + Nleello) < =l llollee llo + [luello + VBollugll + +Bolluzl)
B B
a a a a
0 1 0 2 0 1 0 2
= =llullo - llee llo + =llee”llo - Ml llo + =llee” llo - VBollugll + =llee”|lo - vBolluzll
B B B B
<

1 «
5[4(E)leu°||§ + [lu'15 + NP1IG + Bolluk 11> + Bolluz]I*].

That is,
a
' 15 + 1115 + Bolluz 1> + Bolle 1 < 4(=)*1ud’ |15 4.7)
Because of C; = 4%’8, therefore C;' = ﬁ €(3,%),50C;' < 1,BoC;" < Bo. From (4.7), we can get
_ a
llu' 15 + BoCy ]l < 4(=)1l[5 (4.8)
B
_ a
111§ + BoCr luz]l? < 4(=)11ull5. (4.9)
B
According to ' = u' — pu® and trigonometric inequality, one can get

@115 = llu' = pull5 < (lae'llo + pll’llo)* < 2l 1§ + 207 |1u°l[5. (4.10)

Using (4.8) and (4.10), it is easy to obtain that
_ _ _ [
' 11§ + BoCr Mz 1P < 20l 1§ + 2071’15 + 280 Mg < [8(5)2 + 2071115 4.11)

Similarly, we will estimate ||#*[[5 + BoC; ' |lu3]|*. Using (4.8) and (4.9), one can get

215 + BoCr 21 < 201l + 2071l 1§ + BoC M N1
< 2(1ll5 + BoCy I IP) + 2% (Ul 15 + BoCr Ml IP)
<

3 a
2 - A=) ll5 + 207 - A=)l
B B

8(%)2(1 + )5, (4.12)
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In summary, by using (4.4), combining (4.11) with (4.12), then

{ ' 15 + BoC Ml 1P < Mollu®lI3,

11? <
||u2||2 + BoC M 1> < Mollu?|[5-
Lemma 4.1 already completed proved. O

Next, for k > 3, we give the estimate for [liZ*||3 + BoC;'lut]]* in the following Lemma 4.2, which is

an important conclusion for the stability analysis of the proposed scheme.
Lemma 4.2. ||ﬁk||(2) +B0C1_1||u§]|2 < M0||u0||g, 3 <k < K, where M, defined in (4.4).
Proof. First, we deduce the general formula. Using (1.3) and (3.4), we have

N-1

-2 Z(uxpx b = —2((ub),, @) = 20k,

= (u +u +pu k]—(ux, x]+(u +pu k]

= (u_x7 x] + (u +pux ’ x pu_ ]

= (M)'c’ ”fc] +(”x p(”x»” ]+P(ux sUsl —p (ul; Lu lf .
That is,
N-1
=2 3Gk )t = 1P + WA - Pl P (4.13)
j=1

Multiplying 2ﬁ§h on both sides of (4.1c) for k = 3 and taking the sum over j and using (4.13), we get
1115 + BoCr ]l = BoCr ']l < 3Nl + il Ilg + el
According to (I) in Lemma 3.2 and (II) in lemma 3.3, we have

1|15 + BoCy 2] (4.14)
BIE NG + BoCr oIz + a3l |15 + dallull

pUl@ 13 + BoCr 2l + dNa' 1} + dyllul}

pU@ 15 + BoCrH 121 + d5(la' 1§ + BoCr ui]?) + dyllull}.

IAIA

IA

By directly computing, it can be easy to deduce that a?é + J? +p < 1. By using (4.2) and (4.3), (4.14)
is becoming as follows

1115 + BoCr 31 < Moo + di + d)llully < Mollullg. (4.15)

For k > 4, multiplying both sides of the (4.1d) by 2ﬁ’;h and taking the sum over j and using (4.13),
one gets

20115 + BoCr 51 + BoCr k]l = BoCr o2l 112 (4.16)
k-1
< plE G + 1a) + Z i IE G + 12115) + doCllu I + 1115
i=2
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k-1 k—1

—k—12 Tk —k—i|2 k11,0112 Tk JkN115K012

= AR+ D" A + A + (o + Y i+ AR,
i=2 i=2

According to (IIT) in Lemma 3.3, the above inequality (4.16) becomes

115 + BoCr IHA = BoCr o2l 1P 4.17)
k—1
< Pl + D dl a1 + I,
i=2

By (I) in Lemma 3.2: 0 < p < 1 and (4.17) yields

k2 —1yj, k2
&l + BoCy lluzll

k—1

—k—12 -1 2y, k=172 Jk 1 1=k—i2 k11,0112

< pllE I + BoCT PP P + D dl G + il
i=2
k—1

—k—112 -1 k=172 Tk —k—i)|2 Jk11,,0112

= pUIa@ 1§ + BoC ol 1) + ) di_ N IE + dbllu’Il
i=2

IA

k—1
—k—112 =1y,,k—1712 Jk 15k—i2 k11,0112
PN + BoCT I 1) + D dl a1 + gl
i=2

k-1
PN + BoCT Pl 1P + > di (15 + BoCT 1) + gl
i=2

IA

That is,

118 + BoCi k1P < ("1 + BoCT ol 1) (4.18)
k—1

£ ) dE N + BoCT IR + dIE, k> 4.
i=2

Using the mathematics induction, it is easy to prove the following inequality
34115 + BoCy 1> < Mollu®|l5, 4 <k < K. (4.19)
As k =4,by (4.2), (4.3) and (4.15), from (4.18) we can obtain
115 + BoCy ]l

3
pUIE|I5 + BoCr plld1P) + Z dy_(1*15 + BoCr M ™ 11%) + dg Il

i=2

IA

3
Mo(p+ " i+ dDIll§ < Mollu}. (4.20)

i=2

According to (4.20), this is the case of (4.19) when k = 4. Assuming that (4.19) establish for

IA

k=35,6,---,K—1, and from (4.18) one immediately obtain that,

K-1
~K2 —1y,,K712 JK JK 012 012
1115 + BoCr 1P < Moo + ) di_; + Il < Mol
i=2
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The proof of Lemma 4.2 is completed. O
We will give numerical scheme (4.1) is unconditionally stable in the following Theorem 4.1.

Theorem 4.1. The numerical scheme (4.1) is unconditionally stable, and its solution satisfies the
following estimate for all At > 0,h > O:

lMllo + BoCT k]l < (4+/Mo + Dlluglly, k =1,2,--- . K.
Proof. According to Lemma 4.1 and Lemma 4.2, we immediately give the following estimate
1G5 + BoCy M IUk]P < Mollu®ll, &k =1,2,--- K. (4.21)
From (4.21), we have
Il < VMollulo, k= 1,2,--- K.

According to (3.20), (I) in Lemma 3.2, we have

k
lle"llo

—k k=1 —k k=1 —k k-1 k=2
12" + pu"lo < [l llo + pll"llo < l"llo + p(lla""llo + pllu™llo)

= @l + pll@"llo + o1l

S ......

< @l + plld@llo + o217 2llo + P17 3llo + - + o N lo + oM 1ullo

< Mollllo + p VMollu®llo + p* \/Mollu®llo + « - + o~ /Mol llo + oM 11u°llo
= Mollllo(1 +p +p* + -+ + o) + o 1ullo

< Ml - —— + 1l < B VMg + DIl

l-p

According to the above estimation, we have

lutllo + BoCT k]l < (4 VMo + Dlllo, k=1,--- K.

Theorem 4.1 is then completed. m|
In the next Theorem 4.2, we give the convergence analysis of the full discrete scheme.

Theorem 4.2. Assume that u(x,t) which is the solution of Eq (1.1), u’J‘. be the solution of the problem
(4.1), Suppose I‘I(lgl%(] |0ul < M. Then fork =1,2,---, K, we have
te(V,

lee(xejo 1) = ullo + AJBoCy iz = ucll < CAFT + ),
where 0 < 8 < 1, and C is a positive constant that does not depend on At, h.

Proof. According to Theorem 2.1 and (3.5), similar to the Theorem 4.1, we can obtain the proof of
Theorem 4.2. Here we omit it. O

Remark 4.1. The convergence of the proposed scheme can be analysis with the above analysis
technique and the idea of [21] on the graded mesh. For the stability analysis of the proposed scheme
is very difficult at present by using the analysis method in this paper. The mainly difficulty is whether
the coefficients d’,:_l. in Lemma 3.1 is nonnegativity for the graded temporal mesh, which is still an open
problem up to now.
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5. Numerical validation

5.1. Algorithm implementation
For the sake of simplicity, we only implement algorithm (4.1) as following:

(1) Denote the Iy_1)xn-1y as a identity matrix of (N —1)X (N —1), and D_1)xn-1) as a difference matrix
of second derivative in space, i.e.,

-2 1

I -2 1
1 . . .

Dov-tyxv-1) = 33 ERERE :

.. 1

1 -2

k k k k
u :(u19u25“' ’uN_])’k: 1’25"' ’K~

(2) Fork =1 and k = 2, based on (4.1a) and (4.1b), we have

(E\II(N—I){(\IX—I) = BoDwv-1yxv-1) . /D\ZI(N—l)x(N—l) ) ((ul)T)
- DII(N—I)X(N—U DZI(N—I)X(N—I) _,BOD(N—l)x(N—l) (”2)T (5.1)
_ (QQI(N—nx(N—l)(MO)T
DOI(Nfl)x(N—l)(uo)T ’
where (u')" represent the transpose of (u'). Solving the above Eq (5.1), we obtain u' and 1.
(3) For k = 3, based on (4.1c), we have
(Iv-pxv-1) + ﬁOCI_ID(N—l)x(N—l))u3
(5.2)
= ng(N—l)x(N—l)uz + d?I(N—l)x(N—l)ul + dSI(N—l)x(N—l)uO- '
By solving the above Eq (5.2), we can obtain u°.
(4) For k > 4, based on (4.1d), we have
k
I n-1)xv-1) +,80C1_1D(N—1)><(N—1))uk = Z d]]:_iI(N—l)x(N—l)uk_l- (5.3)

i=1

We solve the Eq (5.3) and get u*, k = 4,5,--- ,k.

5.2. Numerical results

In this part, we carry out in this section a series of numerical experiments and present some results
to confirm our theoretical statements. The main purpose is to check the convergence behavior of the
numerical solution with respect to the time step Ar and space size h used in the calculation.The first
two numerical examples are proposed to show the efficiency of the 3 — 3 order in time and second order
in space of one and two dimension in space, respectively. The last numerical example, we choose
the graded grid numerical schemes to solve problems when the solution of TFDE:s is initial value
singularity.
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Example 5.1. Consider f(x,t) and uy(x) in (1.2) as the following form

I(5)
IG-p

7 + 47" sin(@rx), uy(x) = 0,

fn =1

it is easy to check that the exact solution is given by u(x,t) = t* sin(2rx). In this example, we choose
a=0,b=1,T =1,=0.2,0.5,0.8 and the step size At = %, h= % Here we take two different sets of
step size parameters. In the first case, we verify that the spatial convergence order and choose K = 2'°,
and N = 2%,k = 2,3,4,5,6,7. In the second case, we verify that the convergence order in time and
choose K = 2F k =2,3,4,5,6,7; and N = [K 3%p] where [x] denote the maxinum integer part of x. We
denote the max error as e™" = n}%x Iulj‘. —u(xj, t)l, here u’]‘ and u(x, ty) are the numerical solution and
exact solution for (1.1) at point (); i» 1), respectively.

Firstly, we plot the error distribution. In Figure 1, the error distribution of K = 2°, N = [K(1-570-3A)]

and B = 0.5 is shown, where [-] indicates rounding up. From Figure I, we find that the errors can be
as small as 107,

Secondly, we plot log-log graph of error. In Figure 2, A logarithmic scale has been used for both
At-axis and error-axis in this figure. For B = 0.2,0.8, we find the temporal approximation order close
to 3—p, i.e. the slopes of the error curves in these log-log plots are 2.8, 2.2 respectively for 5 = 0.2,0.8.

It is easy to see that the convergence order in Table 1 is very close to 2. This shows that the
convergence order of space is 2 and not related to the selection of B, which is consistent with the
theoretical result of the Theorem 4.2.

From Table 2, it is easy to see that convergence order is almost 2.8,2.5,2.2 with respect to 3 =
0.2,0.5,0.8,respectively. This indicates that the time convergence order is 3 — B which is consistent
with the theoretical result of the Theorem 4.2.

The error of the scheme with 3=0.5.

0.5

-0.5

Figure 1. Error distribution of 8 = 0.5 for Example 5.1.
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The convergence order of the scheme in time

""" o 9%

Error

Figure 2. Errors as a function of the time step At for 8 = 0.2, 0.8 for Example 5.1.

Table 1. The errors ¢*" and decay rates for 8 = 0.2, 0.5 and 0.8 for Example 5.1.

B=02 Rate B =05 Rate B =0.8 Rate
2.24267623e-1 - 2.19495762e-1 - 2.12827066e-1 -
5.11915396e-2  2.13124405 5.02547233e-2  2.12686198 4.89402966e-2 2.12058688
1.25184509¢e-2  2.03184934  1.22977077e-2  2.03086976  1.19877349e-2  2.02946376
3.1125139%-3  2.00790382 3.05813631e-3  2.00766481 2.98178274e-3  2.00731203
7.77065525e-4  2.00197215 7.63522666e-4 2.00190982  7.44526894e-4  2.00177927
1.94200123e-4  2.00049214 1.90819202e-4 2.00046462 1.86098139e-4  2.00026033

|~ 2= Bl 5l e s | =

[N
0|

Table 2. The errors ¢*" and decay rates for 8 = 0.2, 0.5 and 0.8 for Example 5.1.

B=02 Rate B=0.5 Rate B=0.8 Rate
6.61870458e-2 - 8.09279866e-2 - 1.30876112e-1 -
9.79159847e-3  2.75693257 1.89320008e-2 2.09581181 3.08129985e-2  2.08659081
1.33613669¢-3  2.87347678 3.12778295e-3  2.59761458 7.22284764e-3  2.09289944
1.95889521e-4  2.76995547 5.54215075e-4 2.49662254 1.57296693e-3  2.19907939
2.81063830e-5 2.80107051 9.77531242e-5 2.50323123 3.38827437e-4 2.21486573
4.04673058e-6  2.79606910 1.72479211e-5 2.50272032  7.37134520e-5 2.20055087

- 2 8 5 e e | B

[N
0
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Example 5.2. Consider f(x,y,t) and uy(x,y) in (1.1) as the following form

I(5)
G -4

it is easy to check that the exact solution of (1.1) is following

fCy,n=1 7 + 87°1*] sin(27x) sin(27y), uo(x,y) = 0,

u(x,y,t) = ¢ sin(27x) sin(27y).

In this numerical example, we choose T = 1 and space domain is [0,1]%. Denote the step size
At = %, and spatial size Ax = Ay = h = %, and the error is

At,Ax,Ay __ k
eAAXAY makx |ui,j - u(xi,yj, )l
L],

Here we take two different sets of step size parameters. In the first case, we verify that the spatial
convergence order and choose K =5 -2 and N =5 - 2%,k = 2,3,4,5,6. In the second case, we verify
that the temporal convergence order and choose K =5 - 2k k=2,3,4,5,6, and N = [K%'B].

From Table 3, it is easy to show that the convergence order in space is close to 2 which is consistent
with the convergence order analysis in space of the Theorem 4.2.

From Table 4, one can be easy to see that convergence order is almost 2.8,2.5,2.2 for f =
0.2,0.5,0.8, respectively. This indicates that the temporal convergence order is 3—f3 which is consistent
with the theoretical result of the Theorem 4.2.

Table 3. The errors ¢***%% and decay rates with 8 = 0.2, 0.5 and 0.8 for Example 5.2.

Ax = Ay £=02 Rate £=05 Rate £=038 Rate
% 7.32588952e-3 - 7.26023603e-3 - 7.16700414e-3 -
% 1.92366631e-3  1.92914538 1.90651985e-3  1.92907489 1.88217592e-3  1.92896870
% 4.92984038e-4  1.96424572  4.88596603e-4 1.96422581 4.82373986e-4 1.96417747
% 1.24789589%¢-4  1.98204334  1.23679889e-4  1.98203289 1.22112645e-4 1.98193949
é 3.13925997e-5 1.99100117 3.11139553e-5 1.99097722 3.07270665e-5 1.99063066

Table 4. The errors ¢~ and decay rates with 8 = 0.2, 0.5 and 0.8 for Example 5.2.

At B=02 Rate B=0.5 Rate B=0.28 Rate

}T 1.45302385¢-2 - 1.98108543e-2 - 2.87895267e-2 -

% 2.39515094e-3  2.60086990  4.57826737e-3  2.11341747  7.83171525e-3  1.87814385
% 3.35463869e-4  2.83588728  7.93856560e-4  2.52785146  1.86353942e-3  2.07128296
3l2 4.98304436e-5  2.75105806  1.43458541e-4  2.46824448  4.16260488e-4  2.16248681
61—4 7.18924725e-6  2.79311479  2.55133078e-5 2.49131199  9.07614406e-5  2.19733521

In the above two numerical examples, we assume that the solution is sufficiently smooth, which is
also the basic requirement of all high order numerical schemes. In order to illustrate the effectiveness of
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the numerical scheme of this paper, the third numerical example is the numerical result of nonsmooth
solution by using the graded mesh.

Example 5.3. In this example, we consider the problem (1.1) with exact solution is
u(x, ) = 7 sin(2mx),

which the third derivative of time is singular at the initial value. It is easy to check that the right hand
function is

fx,0) = [%ﬁ + 4] sin(2mx)

and ug(x) = 0.

It is easy to prove that the exact solution of this example is not satisfied the condition of Theorem 2.1.
In order to ensure the time convergence order unreduced, we choose graded mesh is t; = (j/K)”, j =
0,1,---, K, with a graded parameter y base on the idea of [21] and B = 0.3,0.5,0.7. Here we take
two different sets of step size parameters. In the first case, we verify that the spatial convergence order
and choose K = 2° and N = 2%,k = 2,3,4,5,6,7. In the second case, we verify that the temporal
convergence order and choose K = 4,8,16,32,64,128 withy = 3‘%ﬁ N = [K¥].

From Table 5, one can see that the convergence order of spatial is almost 2. And under the condition
ofy = 3’%5, it is easy to obtain that the convergence order in time is 3 — 3 with respect to the theoretical

analysis Theorem 4.1 in [21]. From the Table 6, we see that the convergence order in time is almost

3-8
Table 5. The errors ¢**" and decay rates with 8 = 0.3, 0.5 and 0.7 for Example 5.3.

B =03 Rate B=0.5 Rate B=0.7 Rate
2.24283447e-1 - 2.22112851e-1 - 2.19254736e-1 -
5.11949227e-2  2.13125050 5.07700212e-2  2.12924409 5.02100716e-2  2.12655931
1.25192834e-2  2.03184875 1.24192472e-2 2.03139913  1.22874280e-2 2.03079381
3.11274154e-3  2.00789428 3.08812229e-3 2.00777593 3.05571680e-3  2.00760021
7.7714385%-4  2.00193220 7.71032310e-4 2.00186666 7.63024883e-4 2.00170883
1.94241274e-4  2.00033188 1.92735233e-4 2.00017098 1.90799176e-4 1.99967516

|_ Q- 8= 5= coi— s | =

—_
[
=3}

Table 6. The errors ¢*" and decay rates with 8 = 0.3, 0.5 and 0.7 for Example 5.3.

B =03 Rate B =05 Rate B =07 Rate
2.33652761e-2 - 2.45667893e-2 - 3.43008919e-2 -
3.21431860e-3  2.86178124 5.46965600e-3 2.16718731 7.69626349¢-3  2.15601599
5.91658503e-4 2.44167631 9.80816120e-4 2.47939550 1.68193842e-3  2.19403330
9.94240948e-5 2.57309728 1.81758076e-4 2.43196321 3.41593332e-4 2.29977316
1.65508545e-5 2.58668981 3.29996439e-5 2.46149711 7.10322502e-5 2.26573372
2.67622171e-6  2.62863615 5.93030244e-6 2.47627286 1.44529613e-5 2.29710906

|_‘ 9;|_. m_ ;|»— ol— = 2

[
3
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6. Conclusions

On the idea of [24, 25], we propose a uniform accuracy 3 — 8 order for fractional derivatives
based on piecewise quadratic interpolation, and apply it to solve TFDE. In particular, the proposed
numerical scheme overcome the problem of order reduction at the initial value of the high-order
numerical scheme, and also provides a general construction method for the numerical scheme with
uniform convergence order. The stability and error estimates of high order uniform accuracy are strictly
theoretical analysis. In terms of numerical implementation, we firstly use the full discrete scheme to
solve one and two dimensional TFDE with the sufficiently smooth solution. We secondly use the
numerical scheme to solve the TFDE with nonsmooth solution on the graded mesh. These two kinds
of numerical examples fully illustrate that the full discrete scheme of this paper is very effective. The
method of analyzing the convergence and stability of schemes in this paper can provide an effective
analysis tool for analyzing the convergence and stability of numerical schemes of fractional integro-
differential equations. In the future, we will use the proposed effective scheme to solve TFDE optimal
control problem, and expands proposed effective scheme for solving the nonlinear multi-dimensional
fractional integro-differential equations. Based on the ideas of references [33], we also consider to
solve the nonlinear Lane-Emden equation with fractal-fractional derivative.
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