In this paper, we construct and formulate the solutions and periodicity character of the following nonlinear rational systems of difference equations:
$ \begin{equation} S_{n+1} = \dfrac{T_{n} S_{n-2}}{S_{n-2} + T_{n-1}},\quad T_{n+1} = \dfrac{S_{n} T_{n-2}}{\pm T_{n-2} \pm S_{n-1}},\quad \;\;\;\; n = 0,1,2,...., \quad\quad\quad(0.1)\end{equation} $
where the initial conditions $ s_{-2}, s_{-1}, s_0, t_{-2}, t_{-1}, t_0 $ are positive real numbers. Moreover, some mathematical programs are used to support our theoretical results of each system in this paper.
Citation: Ibraheem M. Alsulami, E. M. Elsayed. On a class of nonlinear rational systems of difference equations[J]. AIMS Mathematics, 2023, 8(7): 15466-15485. doi: 10.3934/math.2023789
In this paper, we construct and formulate the solutions and periodicity character of the following nonlinear rational systems of difference equations:
$ \begin{equation} S_{n+1} = \dfrac{T_{n} S_{n-2}}{S_{n-2} + T_{n-1}},\quad T_{n+1} = \dfrac{S_{n} T_{n-2}}{\pm T_{n-2} \pm S_{n-1}},\quad \;\;\;\; n = 0,1,2,...., \quad\quad\quad(0.1)\end{equation} $
where the initial conditions $ s_{-2}, s_{-1}, s_0, t_{-2}, t_{-1}, t_0 $ are positive real numbers. Moreover, some mathematical programs are used to support our theoretical results of each system in this paper.
[1] | E. M. Elsayed, A. Alshareef, F. Alzahrani, Qualitative behavior and solution of a system of three dimensional rational difference equations, Math. Methods Appl. Sci., 45 (2022), 5456–5470. https://doi.org/10.1002/mma.8120 doi: 10.1002/mma.8120 |
[2] | E. M. Elsayed, Q. Din, N. A. Bukhary, Theoretical and numerical analysis of solutions of some systems of nonlinear difference equations, AIMS Math., 7 (2022), 15532–15549. https://doi.org/10.3934/math.2022851 doi: 10.3934/math.2022851 |
[3] | M. El-Dessoky, E. M. Elsayed, E. Elabbasy, A. Asiri, Expressions of the solutions of some systems of difference equations, J. Comput. Anal. Appl., 27 (2019), 1161–1172. |
[4] | M. B. Almatrafi, Analysis of solutions of some discrete systems of rational difference equations, J. Comput. Anal. Appl., 29 (2021), 355–368. |
[5] | M. M. Alzubaidi, M. B. Almatrafi, Analysis of exact solutions to some systems of difference equations, MathLAB J., 3 (2019), 96–117. |
[6] | H. S. Alayachi, A. Q. Khan, M. S. M. Noorani, On the solutions of three-dimensional rational difference equation systems, J. Math., 2021 (2021), 1–15. https://doi.org/10.1155/2021/2480294 doi: 10.1155/2021/2480294 |
[7] | H. S. Alayachi, A. Q. Khan, M. S. M. Noorani, A. Khaliq, Displaying the structure of the solutions for some fifth-order systems of recursive equations, Math. Probl. Eng., 2021 (2021), 1–14. https://doi.org/10.1155/2021/6682009 doi: 10.1155/2021/6682009 |
[8] | A. Khaliq, M. Shoaib, Dynamics of three-dimensional system of second order rational difference equations, Electron. J. Math. Anal. Appl., 9 (2021), 308–319. |
[9] | Q. Din, Dynamics of a discrete Lotka-Volterra model, Adv. Differ. Equ., 2013 (2013), 1–13. https://doi.org/10.1186/1687-1847-2013-95 doi: 10.1186/1687-1847-2013-95 |
[10] | F. Alzahrani, A. Khaliq, E. M. Elsayed, Dynamics and behaviour of some rational systems of difference equations, J. Comput. Theor. Nanosci., 13 (2016), 8583–8599. https://doi.org/10.1166/jctn.2016.6016 doi: 10.1166/jctn.2016.6016 |
[11] | W. Wang, H. Feng, On the dynamics of positive solutions for the difference equation in a new population model, J. Nonlinear Sci. Appl., 9 (2016), 1748–1754. http://doi.org/10.22436/jnsa.009.04.30 doi: 10.22436/jnsa.009.04.30 |
[12] | A. Ahmed, On the dynamics of a system of rational difference equations, Dyn. Contin. Discrete Impulsive Syst. Ser. A: Math. Anal., 21 (2014), 487–506. |
[13] | N. Haddad, N. Touafek, J. F. T. Rabago, Well-defined solutions of a system of difference equations, J. Appl. Math. Comput., 56 (2018), 439–458. https://doi.org/10.1007/s12190-017-1081-8 doi: 10.1007/s12190-017-1081-8 |
[14] | M. B. Almatrafi, Solutions structures for some systems of fractional difference equations, Open J. Math. Anal., 3 (2019), 52–61. https://doi.org/10.30538/psrp-oma2019.0032 doi: 10.30538/psrp-oma2019.0032 |
[15] | A. Sanbo, E. M. Elsayed, Analytical study of a system of difference equation, Asian Res. J. Math., 14 (2019), 1–18. |
[16] | Q. Din, On a system of fourth-order rational difference equations, Acta Univ. Apulensis, Math. Inform., 39 (2014), 137–150. |
[17] | A. Khaliq, H. S. Alayachi, M. S. M. Noorani, A. Q. Khan, On stability analysis of higher-order rational difference equation, Discrete Dyn. Nat. Soc., 2020 (2020), 1–10. https://doi.org/10.1155/2020/3094185 doi: 10.1155/2020/3094185 |
[18] | A. Asiri, M. El-Dessoky, E. M. Elsayed, Solution of a third order fractional system of difference equations, J. Comput. Anal. Appl., 24 (2018), 444–453. |
[19] | A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations $x_{n+ 1} = \dfrac{x_{n-1}}{y_{n}x_{n-1}-1}, y_{n+1} = \dfrac{y_{n-1}}{x_{n}y_{n-1}-1}, z_{n+1} = \dfrac{1} {y_{n}z_{n}}$, Adv. Differ. Equ., 2011 (2011), 1–8. https://doi.org/10.1186/1687-1847-2011-40 doi: 10.1186/1687-1847-2011-40 |
[20] | A. Gurbanlyyev, M. Tutuncu, On the behavior of solutions of the system of rational difference equations, European J. Math. Comput. Sci., 3 (2016), 23–42. |
[21] | H. El-Metwally, E. M. Elsayed, Form of solutions and periodicity for systems of difference equations, J. Comput. Anal. Appl., 15 (2013), 852–857. |