Research article

Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $ (h_1, h_2) $-Godunova-Levin functions

  • Correction on: AIMS Mathematics 8: 13793-13794.
  • Received: 16 August 2022 Revised: 23 August 2022 Accepted: 29 August 2022 Published: 01 September 2022
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • Interval analysis distinguishes between inclusion relation and order relation. Under the inclusion relation, convexity and nonconvexity contribute to different kinds of inequalities. The construction and refinement of classical inequalities have received a great deal of attention for many classes of convex as well as nonconvex functions. Convex theory, however, is commonly known to rely on Godunova-Levin functions because their properties enable us to determine inequality terms more precisely than those obtained from convex functions. The purpose of this study was to introduce a ($ \subseteq $) relation to established Jensen-type and Hermite-Hadamard inequalities using $ (h_1, h_2) $-Godunova-Levin interval-valued functions. To strengthen the validity of our results, we provide several examples and obtain some new and previously unknown results.

    Citation: Waqar Afzal, Khurram Shabbir, Thongchai Botmart. Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $ (h_1, h_2) $-Godunova-Levin functions[J]. AIMS Mathematics, 2022, 7(10): 19372-19387. doi: 10.3934/math.20221064

    Related Papers:

  • Interval analysis distinguishes between inclusion relation and order relation. Under the inclusion relation, convexity and nonconvexity contribute to different kinds of inequalities. The construction and refinement of classical inequalities have received a great deal of attention for many classes of convex as well as nonconvex functions. Convex theory, however, is commonly known to rely on Godunova-Levin functions because their properties enable us to determine inequality terms more precisely than those obtained from convex functions. The purpose of this study was to introduce a ($ \subseteq $) relation to established Jensen-type and Hermite-Hadamard inequalities using $ (h_1, h_2) $-Godunova-Levin interval-valued functions. To strengthen the validity of our results, we provide several examples and obtain some new and previously unknown results.



    加载中


    [1] R. E. Moore, Methods and applications of interval analysis, SIAM, Philadelphia, 1966.
    [2] N. A Gasilov, S. E. Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Comput., 12 (2018), 3817–3828. https://doi.org/10.1007/s00500-017-2818-x doi: 10.1007/s00500-017-2818-x
    [3] J. Zhu, Z. Qiu, Interval analysis for uncertain aerodynamic loads with uncertain-but-bounded parameters, J. Fluid. Struct., 81 (2018), 418–436. https://doi.org/10.1016/j.jfluidstructs.2018.05.009 doi: 10.1016/j.jfluidstructs.2018.05.009
    [4] Y. Li, T. Wang, Interval analysis of the wing divergence, Aerosp. Sci. Technol., 74 (2018), 17–21. https://doi.org/10.1016/j.ast.2018.01.001 doi: 10.1016/j.ast.2018.01.001
    [5] J. M. Snyder, Interval analysis for computer graphics, P. ACM Comput. Graph., 19 (1992), 121–130. https:///doi.org/10.1145/133994.134024 doi: 10.1145/133994.134024
    [6] Y. C. Kwun, S. M. Saleem, M. Ghafoor, W. Nazeer, M. S. Kang, Hermite-Hadamard-type inequalities for functions whose derivatives are convex via fractional integrals, J. Inequal. Appl., 1 (2019), 1–16. https://doi.org/10.1186/s13660-019-1993-y doi: 10.1186/s13660-019-1993-y
    [7] Y. Chalco-Cano, N. G. Silva, A. Rufian-Lizana, On the Newton method for solving fuzzy optimization problems, Fuzzy Set. Syst., 272 (2015), 60–69. https://doi.org/10.1016/j.fss.2015.02.001 doi: 10.1016/j.fss.2015.02.001
    [8] T. M. Costa, H. Bouwmeester, A. W. Lodwick, C. Lavor, Calculating the possible conformations arising from uncertainty in the molecular distance geometry problem using constraint interval analysis, Inform. Sci., 415 (2017), 41–52. https://doi.org/10.1016/j.ins.2017.06.015 doi: 10.1016/j.ins.2017.06.015
    [9] T. M. Costa, Y. Chalco-Cano, A. W. Lodwick, N. G. Silva, Generalized interval vector spaces and interval optimization, Inform. Sci., 311 (2015), 74–85. https://doi.org/10.1016/j.ins.2015.03.033 doi: 10.1016/j.ins.2015.03.033
    [10] R. Osuna-Gomez, Y. Chalco-Cano, B. Hernández-Jimenez, G. Ruiz-Garzon, Optimality conditions for generalized differentiable interval-valued functions, Inform. Sci., 321 (2015), 136–146. https://doi.org/10.1016/j.ins.2015.05.039 doi: 10.1016/j.ins.2015.05.039
    [11] H. Roman-Flores, Y. Chalco-Cano, N. G. Silva, A note on Gronwall type inequality for interval-valued functions, Inform. Sci., 321 (2013), 1455–1458. https://doi.org/10.1016/j.ins.2015.04.036 doi: 10.1016/j.ins.2015.04.036
    [12] Y. Guo, G. Ye, D. Zhao, W. Liu, Some integral inequalities for log-$ h $-convex interval-valued functions, IEEE Access, 7 (2019), 86739–86745. https://doi.org/10.1109/ACCESS.2019.2925153 doi: 10.1109/ACCESS.2019.2925153
    [13] D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 1 (2018), 1–14. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [14] K. Guan, Wright type multiplicatively convex functions, Math. Inequal. Appl., 1 (2015), 9–16. http://doi.org/10.7153/mia-18-28 doi: 10.7153/mia-18-28
    [15] M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, Trans. J. Math. Mech., 5 (2013), 129–136. https://doi.org/10.1016/j.ins.2013.03.045 doi: 10.1016/j.ins.2013.03.045
    [16] S. S. Dragomir, J. Persson, E. L. Guan, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [17] S. Varoșanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
    [18] M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., 2 (2008), 335–341. https://doi.org/10.7153/jmi-02-30 doi: 10.7153/jmi-02-30
    [19] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones (Antofagasta), 34 (2015), 323–341. https://doi.org/10.1016/j.ins.2015.04.036 doi: 10.1016/j.ins.2015.04.036
    [20] M. A. Latif, M. Alomari, On Hadamard-type inequalities for h-convex functions on the co-ordinates, Int. J. Math. Anal., 3 (2009), 1645–1656.
    [21] M. Z. Sarikaya, M. E. Ozdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comen., 79 (2010), 265–272.
    [22] M. U. Awan, Some new classes of convex functions and inequalities, Miskolc Math. Notes, 19 (2018), 77–94. https://doi.org/10.18514/MMN.2018.2179 doi: 10.18514/MMN.2018.2179
    [23] Y. An, G. Ye, D. Zhao, W. Liu, Hermite-Hadamard type inequalities for interval $(h_1, h_2)$-convex functions, Mathematics, 7 (2019), 436. https://doi.org/ 10.3390/math7050436 doi: 10.3390/math7050436
    [24] E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions, Adv. Differ. Equ., 1 (2020), 1–17. https://doi.org/10.1186/s13662-020-02977-3 doi: 10.1186/s13662-020-02977-3
    [25] M. A. Ali, H. Budak, G. Murtaza, Y. M. Chu, Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions, J. Inequal. Appl., 1 (2021), 1–18. https://doi.org/10.1186/s13660-021-02619-6 doi: 10.1186/s13660-021-02619-6
    [26] H. Kalsoom, M. A. Ali, M. Idrees, P. Agarwal, M. Arif, New post quantum analogues of Hermite-Hadamard type inequalities for interval-valued convex functions, Math. Probl. Eng., 1 (2021), 2–17. https://doi.org/10.1155/2021/5529650 doi: 10.1155/2021/5529650
    [27] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard-type inequalities for-convex fuzzy-interval-valued functions, Adv. Differ. Equ., 1 (2021), 1–20. https://doi.org/10.1186/s13662-021-03245-8 doi: 10.1186/s13662-021-03245-8
    [28] T. Saeed, M. B. Khan, S. Treanta, H. H. Alsulami, M. S. Alhodaly, Interval Fejér-type inequalities for left and right-$\lambda$-preinvex functions in interval-valued settings, Axioms, 11 (2022), 368. https://doi.org/10.3390/axioms11080368 doi: 10.3390/axioms11080368
    [29] M. B. Khan, S. Treanta, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some new versions of integral inequalities for left and right preinvex functions in the interval-valued settings, Mathematics, 10 (2022), 611. https://doi.org/10.3390/math10040611 doi: 10.3390/math10040611
    [30] M. B. Khan, S. Treanta, H. Alrweili, T. Saeed, M. S. Soliman, Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings, AIMS Math., 7 (2022), 15659–15679. https://doi.org/0.3934/math.2022857
    [31] M. B. Khan, O. M. Alsalami, S. Treanta, T. Saeed, K. Nonlaopon, New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities, AIMS Math., 7 (2022), 15497–15519. https://doi.org/10.3934/math.2022849 doi: 10.3934/math.2022849
    [32] M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanta, M. S. Soliman, Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions, AIMS Math., 7 (2022), 10454–10482. https://doi.org/10.3934/math.2022583 doi: 10.3934/math.2022583
    [33] H. Budak, T. Tunç, M. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, J. Am. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [34] H. Kara, M. A. Ali, H. Budak, Hermite-Hadamard-Mercer type inclusions for interval-valued functions via Riemann-Liouville fractional integrals, Turk. J. Math., 46 (2020), 2193–2207. https://doi.org/10.55730/1300-0098.3263 doi: 10.55730/1300-0098.3263
    [35] H. Kara, M. A. Ali, H. Budak, Hermite‐Hadamard-type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals, Math. Method. Appl. Sci., 44 (2021), 104–123. https://doi.org/10.1002/mma.6712 doi: 10.1002/mma.6712
    [36] H. Budak, H. Kara, M. A. Ali, S. Khan, Y. M. Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, Open Math., 19 (2021), 1081–1097. https://doi.org/10.1515/math-2021-0067 doi: 10.1515/math-2021-0067
    [37] O. Almutairi, A. Kilicman, Some integral inequalities for $h$-Godunova-Levin preinvexity, Symmetry, 11 (2019), 1500. https://doi.org/10.3390/sym11121500 doi: 10.3390/sym11121500
    [38] H. Bai, A. Kilicman, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Set. Syst., 327 (2017), 31–47. https://doi.org/10.1016/j.fss.2017.02.001 doi: 10.1016/j.fss.2017.02.001
    [39] W. Afzal, A. A. Lupaş, K. Shabbir, Hadamard and Jensen-type inequalities for Harmonical $(h_1, h_2)$-Godunova-Levin interval-valued functions, Mathematics, 10 (2022), 2976. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970
    [40] A. Dinghas, Zum minkowskischen integralbegriff abgeschlossener mengen, Math. Z., 66 (1956), 173–188. https://doi.org/10.1007/BF01186606 doi: 10.1007/BF01186606
    [41] S. Markov, On the algebraic properties of convex bodies and some applications, J. Convex Anal., 7 (2000), 129–166. https://doi.org/10.1016/j.ins.2000.04.009 doi: 10.1016/j.ins.2000.04.009
    [42] M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, Fractional Hermite-Hadamard inequalities for differentiable $s$-Godunova-Levin functions, Filomat, 30 (2016), 3235–3241. https://doi.org/10.2298/FIL1612235A doi: 10.2298/FIL1612235A
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1577) PDF downloads(123) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog