A concircular vector field $ \mathbf{u} $ on the unit sphere $ \mathbf{S}^{n+1} $ induces a vector field $ \mathbf{w} $ on an orientable hypersurface $ M $ of the unit sphere $ \mathbf{S}^{n+1} $, simply called the induced vector field on the hypersurface $ M $. Moreover, there are two smooth functions, $ f $ and $ \sigma $, defined on the hypersurface $ M $, where $ f $ is the restriction of the potential function $ \overline{f} $ of the concircural vector field $ \mathbf{u} $ on the unit sphere $ \mathbf{S}^{n+1} $ to $ M $ and $ \sigma $ is defined as $ g\left(\mathbf{u}, N\right) $, where $ N $ is the unit normal to the hypersurface. In this paper, we show that if function $ f $ on the compact hypersurface satisfies the Fischer–Marsden equation and the integral of the squared length of the vector field $ \mathbf{w} $ has a certain lower bound, then a characterization of a small sphere in the unit sphere $ \mathbf{S}^{n+1} $ is produced. Additionally, we find another characterization of a small sphere using a lower bound on the integral of the Ricci curvature of the compact hypersurface $ M $ in the direction of the vector field $ \mathbf{w} $ with a non-zero function $ \sigma $.
Citation: Ibrahim Al-Dayel, Sharief Deshmukh, Olga Belova. Characterizing non-totally geodesic spheres in a unit sphere[J]. AIMS Mathematics, 2023, 8(9): 21359-21370. doi: 10.3934/math.20231088
A concircular vector field $ \mathbf{u} $ on the unit sphere $ \mathbf{S}^{n+1} $ induces a vector field $ \mathbf{w} $ on an orientable hypersurface $ M $ of the unit sphere $ \mathbf{S}^{n+1} $, simply called the induced vector field on the hypersurface $ M $. Moreover, there are two smooth functions, $ f $ and $ \sigma $, defined on the hypersurface $ M $, where $ f $ is the restriction of the potential function $ \overline{f} $ of the concircural vector field $ \mathbf{u} $ on the unit sphere $ \mathbf{S}^{n+1} $ to $ M $ and $ \sigma $ is defined as $ g\left(\mathbf{u}, N\right) $, where $ N $ is the unit normal to the hypersurface. In this paper, we show that if function $ f $ on the compact hypersurface satisfies the Fischer–Marsden equation and the integral of the squared length of the vector field $ \mathbf{w} $ has a certain lower bound, then a characterization of a small sphere in the unit sphere $ \mathbf{S}^{n+1} $ is produced. Additionally, we find another characterization of a small sphere using a lower bound on the integral of the Ricci curvature of the compact hypersurface $ M $ in the direction of the vector field $ \mathbf{w} $ with a non-zero function $ \sigma $.
[1] | H. Alencar, M. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc., 120 (1994), 1223–1229. https://doi.org/10.2307/2160241 doi: 10.2307/2160241 |
[2] | L. J. Alías, J. Meléndez, Integral inequalities for compact hypersurfaces with constant scalar curvature in the Euclidean sphere, Mediterr. J. Math., 17 (2020), 61. https://doi.org/10.1007/s00009-020-1482-z doi: 10.1007/s00009-020-1482-z |
[3] | P. Bansal, M. H. Shahid, J. W. Lee, $\zeta $-Ricci soliton on real hypersurfaces of nearly Kaehler 6-sphere with SSMC, Mediterr. J. Math., 18 (2021), 93. https://doi.org/10.1007/s00009-021-01734-4 doi: 10.1007/s00009-021-01734-4 |
[4] | N. Bin Turki, S. Deshmukh, G. E. Vilcu, Characterizing small spheres in a unit sphere by Fischer-Marsden equation, J. Inequal. Appl., 2022 (2022), 118. https://doi.org/10.1186/s13660-022-02855-4 doi: 10.1186/s13660-022-02855-4 |
[5] | D. E. Blair, G. D. Ludden, K. Yano, Hypersurfaces of odd-dimensional spheres, J. Differ. Geom., 5 (1971), 479–486. |
[6] | S. K. Chaubey, U. C. De, Y. J. Suh, Kenmotsu manifolds satisfying the Fischer–Marsden equation, J. Korean Math. Soc., 58 (2021), 597–607. http://doi.org/10.4134/JKMS.j190602 doi: 10.4134/JKMS.j190602 |
[7] | B. Y. Chen, Minimal hypersurfaces in an $m$-sphere, Proc. Amer. Math. Soc., 29 (1971), 375–380. https://doi.org/10.2307/2038146 doi: 10.2307/2038146 |
[8] | Q. M. Cheng, Hypersurfaces in a unit sphere $S^{n+1}(1)$ with constant scalar curvature, J. Lond. Math. Soc., 64 (2001), 755–768. https://doi.org/10.1112/S0024610701002587 doi: 10.1112/S0024610701002587 |
[9] | S. S. Chern, M. do Carmo, S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Funct. Anal. Relat. F., 1970, 59–75. |
[10] | U. C. De, K. Mandal, The Fischer–Marsden conjecture on almost Kenmotsu manifolds, Quaest. Math., 43 (2020), 25–33. https://doi.org/10.2989/16073606.2018.1533499 doi: 10.2989/16073606.2018.1533499 |
[11] | S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roum., 55 (2012), 41–50. |
[12] | S. Deshmukh, First non-zero eigenvalue of a minimal hypersurface in the unit sphere, Ann. Mat. Pura Appl., 191 (2012), 529–537. https://doi.org/10.1007/s10231-011-0194-1 doi: 10.1007/s10231-011-0194-1 |
[13] | S. Deshmukh, A note on hypersurfaces in a sphere, Monatshefte Math., 174 (2014), 413–426. https://doi.org/10.1007/s00605-013-0549-3 doi: 10.1007/s00605-013-0549-3 |
[14] | M. P. do Carmo, F. W. Warner, Rigidity and convexity of hypersurfaces in spheres, J. Differ. Geom., 4 (1970), 133–144. |
[15] | K. L. Duggal, R. Sharma, Symmetries of Spacetimes and Riemannian Manifolds, Springer: Berlin, 1999. https://doi.org/10.1007/978-1-4615-5315-1 |
[16] | F. Erkekoglu, E. García-Río, D. N. Kupeli, B. Ü nal, Characterizing specific Riemannian manifolds by differential equations, Acta Appl. Math., 76 (2003), 195–219. https://doi.org/10.1023/A:1022987819448 doi: 10.1023/A:1022987819448 |
[17] | A. E. Fischer, J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Am. Math. Soc., 80 (1974), 479–484. |
[18] | E. García-Río, D. N. Kupeli, B. Ünal, Some conditions for Riemannian manifolds to be isometric with Euclidean spheres, J. Differ. Equ., 194 (2003), 287–299. |
[19] | T. Hasanis, T. Vlachos, A pinching theorem for minimal hypersurfaces in a sphere, Arch. Math., 75 (2000), 469–471. https://doi.org/10.1007/s000130050531 doi: 10.1007/s000130050531 |
[20] | Z. H. Hou, Hypersurfaces in a sphere with constant mean curvature, Proc. Am. Math. Soc., 125 (1997), 1193–1196. https://doi.org/10.2307/2160241 doi: 10.2307/2160241 |
[21] | W. C. Jagy, Minimal hypersurfaces foliated by spheres, Mich. Math. J., 38 (1991), 255–270. https://doi.org/10.1307/mmj/1029004332 doi: 10.1307/mmj/1029004332 |
[22] | H. B. Jr. Lawson, Local rigidity theorems for minimal hypersurfaces, Ann. Math., 89 (1969), 187–197. https://doi.org/10.2307/1970816 doi: 10.2307/1970816 |
[23] | S. H. Min, K. Seo, Characterizations of a Clifford hypersurface in a unit sphere via Simons' integral inequalities, Monatshefte Math., 181 (2016), 437–450. https://doi.org/10.1007/s00605-015-0842-4 doi: 10.1007/s00605-015-0842-4 |
[24] | K. Nomizu, B. Smyth, On the Gauss mapping for hypersurfaces of constant mean curvature in the sphere, Comment. Math. Helv., 44 (1969), 484–490. https://doi.org/10.1007/BF02564548 doi: 10.1007/BF02564548 |
[25] | M. Okumura, Certain hypersurfaces of an odd dimensional sphere, Tohoku Math. J., 19 (1967), 381–395. |
[26] | D. cS. Patra, A. Ghosh, The Fischer–Marsden conjecture and contact geometry, Period. Math. Hung., 76 (2018), 207–216. https://doi.org/10.1007/s10998-017-0220-1 doi: 10.1007/s10998-017-0220-1 |
[27] | C. cK. Peng, C. L. Terng, The scalar curvature of minimal hypersurfaces in spheres, Math. Ann., 266 (1983), 105–113. https://doi.org/10.1007/BF01458707 doi: 10.1007/BF01458707 |
[28] | O. M. Perdomo, Spectrum of the Laplacian and the Jacobi operator on rotational CMC hypersurfaces of spheres, Pac. J. Math., 308 (2020), 419–433. https://doi.org/10.2140/pjm.2020.308.419 doi: 10.2140/pjm.2020.308.419 |
[29] | M. Scherfner, S. Weiss, S. T. Yau, A review of the Chern conjecture for isoparametric hypersurfaces in spheres, Adv. Lect. Math., 21 (2012), 175–187. |
[30] | K. Seo, Characterizations of a Clifford hypersurface in a unit sphere, In: Hermitian–Grassmannian Submanifolds. Springer Proceedings in Mathematics and Statistics, 203 (2017), 145–153. |
[31] | C. L. Shen, A global pinching theorem of minimal hypersurfaces in the sphere, Proc. Am. Math. Soc., 105 (1989), 92–198. https://doi.org/10.2307/2046755 doi: 10.2307/2046755 |
[32] | Y. J. Suh, H. Y. Yang, The scalar curvature of minimal hypersurfaces in a unit sphere, Commun. Contemp. Math., 9 (2007), 183–200. https://doi.org/10.1016/j.jmaa.2012.02.009 doi: 10.1016/j.jmaa.2012.02.009 |
[33] | S. Tanno, T. Takahashi, Some hypersurfaces of a sphere, Tohoku Math. J., 22 (1970), 212–219. https://doi.org/10.2748/tmj/1178242815 doi: 10.2748/tmj/1178242815 |
[34] | V. Venkatesha, D. M. Naik, H. A. Kumara, Real hypersurfaces of complex space forms satisfying Fischer-Marsden equation, Ann. Univ. Ferrara, 67 (2021), 203–216. https://doi.org/10.1007/s11565-021-00361-x doi: 10.1007/s11565-021-00361-x |
[35] | Q. Wang, C. Xia, Rigidity theorems for closed hypersurfaces in a unit sphere, J. Geom. Phys., 55 (2005), 227–240. https://doi.org/10.1016/j.geomphys.2004.12.005 doi: 10.1016/j.geomphys.2004.12.005 |
[36] | G. J. Wei, Simons' type integral formula for hypersurfaces in a unit sphere, J. Math. Anal. Appl., 340 (2008), 1371–1379. https://doi.org/10.1016/j.jmaa.2007.09.066 doi: 10.1016/j.jmaa.2007.09.066 |
[37] | S. M. Wei, H. W. Xu, Scalar curvature of minimal hypersurfaces in a sphere, Math. Res. Lett., 14 (2007), 423–432. https://dx.doi.org/10.4310/MRL.2007.v14.n3.a7 doi: 10.4310/MRL.2007.v14.n3.a7 |
[38] | H. W. Xu, Z. Y. Xu, The second pinching theorem for hypersurfaces with constant mean curvature in a sphere, Math. Ann., 356 (2013), 869–883. https://doi.org/10.1007/s00208-012-0875-0 doi: 10.1007/s00208-012-0875-0 |
[39] | H. C. Yang, Q. M. Cheng, An estimate of the pinching constant of minimal hypersurfaces with constant scalar curvature in the unit sphere, Manuscr. Math., 84 (1994), 89–100. https://doi.org/10.1007/BF02567445 doi: 10.1007/BF02567445 |
[40] | S. T. Yau, Seminar on differential geometry, Ann. Math. Stud., 102 (1982), 669–706. |
[41] | P. Zhu, Hypersurfaces in spheres with finite total curvature, Results Math., 74 (2019), 153. https://doi.org/10.1007/s00025-019-1082-z doi: 10.1007/s00025-019-1082-z |