Research article

Ergodic stationary distribution of stochastic virus mutation model with time delay

  • Received: 02 May 2023 Revised: 14 June 2023 Accepted: 19 June 2023 Published: 05 July 2023
  • MSC : 60H10, 92B05, 92D30

  • The virus mutation can increase the complexity of the infectious disease. In this paper, the dynamical characteristics of the virus mutation model are discussed. First, we built a stochastic virus mutation model with time delay. Second, the existence and uniqueness of global positive solutions for the proposed model is proved. Third, based on the analysis of the ergodic stationary distribution for the model, we discuss the influence mechanism between the different factors. Finally, the numerical simulation verifies the theoretical results.

    Citation: Juan Ma, Shaojuan Ma, Xinyu Bai, Jinhua Ran. Ergodic stationary distribution of stochastic virus mutation model with time delay[J]. AIMS Mathematics, 2023, 8(9): 21371-21392. doi: 10.3934/math.20231089

    Related Papers:

  • The virus mutation can increase the complexity of the infectious disease. In this paper, the dynamical characteristics of the virus mutation model are discussed. First, we built a stochastic virus mutation model with time delay. Second, the existence and uniqueness of global positive solutions for the proposed model is proved. Third, based on the analysis of the ergodic stationary distribution for the model, we discuss the influence mechanism between the different factors. Finally, the numerical simulation verifies the theoretical results.



    加载中


    [1] L. Stone, R. Olinky, A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533–536. https://doi.org/10.1038/nature05638 doi: 10.1038/nature05638
    [2] M. Sinan, K. J. Ansari, A. Kanwal, K. Shah, T. Abdeljawad, B. Abdalla, et al., Analysis of the mathematical model of cutaneous leishmaniasis disease, Alex. Eng. J., 72 (2023), 117–134. https://doi.org/10.1016/j.aej.2023.03.065 doi: 10.1016/j.aej.2023.03.065
    [3] A. R. Sheergojri, P. Iqbal, P. Agarwal, N. Ozdemir, Uncertainty-based Gompertz growth model for tumor population and its numerical analysis, International Journal of Optimization and Control: Theories and Applications, 12 (2022), 137–150. https://doi.org/10.11121/ijocta.2022.1208 doi: 10.11121/ijocta.2022.1208
    [4] Y. Sabbar, Asymptotic extinction and persistence of a perturbed epidemic model with different intervention measures and standard L$\mathrm{\acute{e}}$vy jumps, Bulletin of Biomathematics, 1 (2023), 58–77. https://doi.org/10.59292/bulletinbiomath.2023004 doi: 10.59292/bulletinbiomath.2023004
    [5] F. Evirgen, U. Esmehan, U. Sümeyra, N. Ozdemir, Modelling influenza a disease dynamics under Caputo-Fabrizio fractional derivative with distinct contact rates, Mathematical Modelling and Numerical Simulation with Applications, 3 (2023), 58–73. https://doi.org/10.53391/mmnsa.1274004 doi: 10.53391/mmnsa.1274004
    [6] K. Shah, T. Abdeljawad, H. Alrabaish, On coupled system of drug therapy via piecewise equations, Fractals, 30 (2022), 2240206. https://doi.org/10.1142/S0218348X2240206X doi: 10.1142/S0218348X2240206X
    [7] K. Shah, T. Abdeljawad, F. Jarad, F. Jarad, Q. Al-Mdallal, On nonlinear conformable fractional order dynamical system via differential transform method, CMES Comp. Model. Eng., 163 (2023), 1457–1472. http://doi.org/10.32604/cmes.2023.021523 doi: 10.32604/cmes.2023.021523
    [8] S. W. Ahmad, M. Sarwar, K. Shah, A. Ahmadian, S. Salahshour, Fractional order mathematical modeling of novel corona virus (COVID‐19), Math. Methods Appl. Sci., 46 (2023), 7847–7860. https://doi.org/10.1002/mma.7241 doi: 10.1002/mma.7241
    [9] L. Liu, X. Ren, X. Liu, Dynamical behaviors of an influenza epidemic model with virus mutation, J. Biol. Syst., 26 (2018), 455–472. https://doi.org/10.1142/S0218339018500201 doi: 10.1142/S0218339018500201
    [10] B. Li, A. Deng, K. Li, Y. Hu, Z. C. Li, Y. L. Shi, et al., Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant, Nat. Commun., 13 (2022), 460. https://doi.org/10.1038/s41467-022-28089-y doi: 10.1038/s41467-022-28089-y
    [11] Y. Liu, A. Feng, S. Zhao, W. Wang, D. He, Large-scale synchronized replacement of Alpha (B.1.1.7) variant by the Delta (B.1.617.2) variant of SARS-COV-2 in the COVID-19 pandemic, Math. Biosci. Eng., 19 (2022), 3591–3596. https://doi.org/10.3934/mbe.2022165 doi: 10.3934/mbe.2022165
    [12] R. M. Chen, Track the dynamical features for mutant variants of COVID-19 in the UK, Math. Biosci. Eng., 18 (2021), 4572–4585. https://doi.org/10.3934/mbe.2021232 doi: 10.3934/mbe.2021232
    [13] Y. Yu, Y. Liu, S. Zhao, D. He, A simple model to estimate the transmissibility of the Beta, Delta, and Omicron variants of SARS-COV-2 in South Africa, Math. Biosci. Eng., 19 (2022), 10361–10373. https://doi.org/10.3934/mbe.2022485 doi: 10.3934/mbe.2022485
    [14] S. P. Otto, T. Day, J. Arino, C. Colijn, J. Dushoff, M. Li, et al., The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic, Curr. Biol., 31 (2021), R918–R929. https://doi.org/10.1016/j.cub.2021.06.049 doi: 10.1016/j.cub.2021.06.049
    [15] G. Cacciapaglia, C. Cot, A. D. Hoffer, S. Hohenegger, F. Sannino, S. Vatani, Epidemiological theory of virus variants, Phys. A, 596 (2022), 127071. https://doi.org/10.1016/j.physa.2022.127071 doi: 10.1016/j.physa.2022.127071
    [16] A. P. Dobie, Susceptible-infectious-susceptible (SIS) model with virus mutation in a variable population size, Ecol. Complex., 50 (2022), 101004. https://doi.org/10.1016/j.ecocom.2022.101004 doi: 10.1016/j.ecocom.2022.101004
    [17] U. A. de León, A. G. C. Pérez, E. Avila-Vales, Modeling the SARS-CoV-2 Omicron variant dynamics in the United States with booster dose vaccination and waning immunity, Math. Biosci. Eng., 20 (2023), 10909–10953. https://doi.org/10.3934/mbe.2023484 doi: 10.3934/mbe.2023484
    [18] Y. R. Kim, Y. J. Choi, Y. Min, A model of COVID-19 pandemic with vaccines and mutant viruses, Plos One, 17 (2022), e0275851. https://doi.org/10.1371/journal.pone.0275851 doi: 10.1371/journal.pone.0275851
    [19] G. Liu, J. Chen, Z. Liang, Z. Peng, J. Li, Dynamical analysis and optimal control for a SEIR model based on virus mutation in WSNs, Mathematics, 9 (2021), 929. https://doi.org/10.3390/math9090929 doi: 10.3390/math9090929
    [20] D. Xu, X. Xu, Y. Xie, C. Yang, Optimal control of an SIVRS epidemic spreading model with virus variation based on complex networks, Commun. Nonlinear Sci., 48 (2017), 200–210. https://doi.org/10.1016/j.cnsns.2016.12.025 doi: 10.1016/j.cnsns.2016.12.025
    [21] Q. Liu, D. Jiang, N. Shi, T. Hayat, Dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases driven by L$\mathrm{\acute{e}}$vy jumps, Phys. A, 492 (2018), 2010–2018. https://doi.org/10.1016/j.physa.2017.11.116 doi: 10.1016/j.physa.2017.11.116
    [22] X. Zhang, M. Liu, Dynamical analysis of a stochastic delayed SIR epidemic model with vertical transmission and vaccination, Adv. Cont. Discr. Mod., 2022 (2022), 35. https://doi.org/10.1186/s13662-022-03707-7 doi: 10.1186/s13662-022-03707-7
    [23] C. Xu, X. Li, The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination, Chaos Soliton. Fract., 111 (2018), 227–234. https://doi.org/10.1016/j.chaos.2021.110772 doi: 10.1016/j.chaos.2021.110772
    [24] A. E. Koufi, The power of delay on a stochastic epidemic model in a switching environment, Complexity, 2022 (2022), 5121636. https://doi.org/10.1155/2022/5121636 doi: 10.1155/2022/5121636
    [25] B. Boukanjime, M. El-Fatini, A. Laaribi, R. Taki, K. Wang, A Markovian regime-switching stochastic hybrid time-delayed epidemic model with vaccination, Automatica, 133 (2021), 109881. https://doi.org/10.1016/j.automatica.2021.109881 doi: 10.1016/j.automatica.2021.109881
    [26] H. J. Alsakaji, F. A. Rihan, S. Kundu, O. Mohamed, Dynamics of a time-delay differential model for tumour-immune interactions with random noise, Alex. Eng. J., 61 (2022), 11913–11923. https://doi.org/10.1016/j.aej.2022.05.027 doi: 10.1016/j.aej.2022.05.027
    [27] I. Ali, S. U. Khan, Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate, Chaos Soliton. Fract., 138 (2022), 110008. https://doi.org/10.1016/j.chaos.2020.110008 doi: 10.1016/j.chaos.2020.110008
    [28] H. J. Alsakaji, F. A. Rihan, A. Hashish, Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 4247800. https://doi.org/10.1155/2022/4247800 doi: 10.1155/2022/4247800
    [29] A. Khan, R. Ikram, A. Din, U. W. Humphries, A. Akgul, Stochastic COVID-19 SEIQ epidemic model with time-delay, Results Phys., 30 (2021), 104775. https://doi.org/10.1016/j.rinp.2021.104775 doi: 10.1016/j.rinp.2021.104775
    [30] F. A. Rihan, H. J. Alsakaji, Analysis of a stochastic HBV infection model with delayed immune response, Math. Biosci. Eng., 18 (2021), 5194–5220. https://doi.org/10.3934/mbe.2021264 doi: 10.3934/mbe.2021264
    [31] R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuz, P. Kumam, Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Med., 141 (2022), 105115. https://doi.org/10.1016/j.compbiomed.2021.105115 doi: 10.1016/j.compbiomed.2021.105115
    [32] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion, J. Franklin I., 356 (2019), 7347–7370. https://doi.org/10.1016/j.jfranklin.2019.06.030 doi: 10.1016/j.jfranklin.2019.06.030
    [33] J. Sun, M. Gao, D. Jiang, Threshold dynamics of a non-linear stochastic viral model with time delay and CTL responsiveness, Life, 11 (2021), 766. https://doi.org/10.3390/life11080766 doi: 10.3390/life11080766
    [34] F. A. Rihan, H. J. Alsakaji, Dynamics of a stochastic delay differential model for COVID-19 infection with asymptomatic infected and interacting people: case study in the UAE, Results Phys., 28 (2021), 104658. https://doi.org/10.1016/j.rinp.2021.104658 doi: 10.1016/j.rinp.2021.104658
    [35] R. Khasminskii, Stochastic stability of differential equations, Berlin: Springer, 2011. https://doi.org/10.1007/978-3-642-23280-0
    [36] E. Buckwar, Euler-Maruyama and Milstein approximations for stochastic functional differential equations with distributed memory term, Berlin: Humboldt-Universität, 2005. http://doi.org/10.18452/3583
    [37] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
    [38] J. Gao, T. Zhang, Analysis on an SEIR epidemic model with logistic death rate of virus mutation, Journal of Mathematical Research with Applications, 39 (2019), 259–268. https://doi.org/10.3770/j.issn:2095-2651.2019.03.005 doi: 10.3770/j.issn:2095-2651.2019.03.005
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1016) PDF downloads(68) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog