The role of integral inequalities can be seen in both applied and theoretical mathematics fields. According to the definition of convexity, it is possible to relate both concepts of convexity and integral inequality. Furthermore, convexity plays a key role in the topic of inclusions as a result of its definitional behavior. The importance and superior applications of convex functions are well known, particularly in the areas of integration, variational inequality, and optimization. In this paper, various types of inequalities are introduced using inclusion relations. The inclusion relation enables us firstly to derive some Hermite-Hadamard inequalities (H.H-inequalities) and then to present Jensen inequality for harmonical $ h $-Godunova-Levin interval-valued functions (GL-IVFS) via Riemann integral operator. Moreover, the findings presented in this study have been verified with the use of useful examples that are not trivial.
Citation: Waqar Afzal, Khurram Shabbir, Savin Treanţă, Kamsing Nonlaopon. Jensen and Hermite-Hadamard type inclusions for harmonical $ h $-Godunova-Levin functions[J]. AIMS Mathematics, 2023, 8(2): 3303-3321. doi: 10.3934/math.2023170
The role of integral inequalities can be seen in both applied and theoretical mathematics fields. According to the definition of convexity, it is possible to relate both concepts of convexity and integral inequality. Furthermore, convexity plays a key role in the topic of inclusions as a result of its definitional behavior. The importance and superior applications of convex functions are well known, particularly in the areas of integration, variational inequality, and optimization. In this paper, various types of inequalities are introduced using inclusion relations. The inclusion relation enables us firstly to derive some Hermite-Hadamard inequalities (H.H-inequalities) and then to present Jensen inequality for harmonical $ h $-Godunova-Levin interval-valued functions (GL-IVFS) via Riemann integral operator. Moreover, the findings presented in this study have been verified with the use of useful examples that are not trivial.
[1] | R. E. Moore, Interval analysis, Englewood Cliffs: Prentice-Hall, 1966. |
[2] | D. Singh, B. A. Dar, Sufficiency and duality in non-smooth interval valued programming problems, J. Ind. Manag. Optim., 15 (2019), 647–665. https://doi.org/10.3934/jimo.2018063 doi: 10.3934/jimo.2018063 |
[3] | I. Ahmad, D. Singh, B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control. Cybern., 44 (2015), 19–45. |
[4] | E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE T. Neur. Net., 20 (2009), 638–653. http://doi.org/10.1109/TNN.2008.2011267 doi: 10.1109/TNN.2008.2011267 |
[5] | J. M. Snyder, Interval analysis for computer graphics, In: Proceedings of the 19th annual conference on computer graphics and interactive techniques, ACM Siggraph, 1992,121–130. |
[6] | N. A. Gasilov, Ş. Emrah Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Comput., 22 (2018), 3817–3828. |
[7] | Y. Li, T. H. Wang, Interval analysis of the wing divergence, Aerosp. Sci. Technol., 74 (2018), 17–21. https://doi.org/10.1016/j.ast.2018.01.001 doi: 10.1016/j.ast.2018.01.001 |
[8] | H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2018), 1306–1318. https://doi.org/10.1007/S40314-016-0396-7} doi: 10.1007/S40314-016-0396-7 |
[9] | T. M. Costa, H. Román-Flores, Y. Chalco-Cano, Opial-type inequalities for interval-valued functions, Fuzzy Set. Syst., 358 (2019), 48–63. https://doi.org/10.1016/j.fss.2018.04.012 doi: 10.1016/j.fss.2018.04.012 |
[10] | S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341. |
[11] | S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices, J. Math. Inequal., 11 (2017), 241–259. http://doi.org/10.7153/jmi-11-23 doi: 10.7153/jmi-11-23 |
[12] | M. A. Noor, C. Gabriela, M. U. Awan, Generalized fractional Hermite-Hadamard inequalities for twice differentiable onvex functions, Filomat, 29 (2015), 807–815. http://doi.org/10.2298/FIL1504807N doi: 10.2298/FIL1504807N |
[13] | M. A. Noor, K. I. Noor, M. V. Mihai, M. U. Awan, Fractional Hermite-Hadamard inequalities for some classes of differentiable preinvex functions, U. Politeh. Univ. Buch. Ser. A, 78 (2016), 163–174. |
[14] | G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. http://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001 |
[15] | M. B. Khan, P. O. Mohammed, J. A. T. Machado, J. L. G. Guirao, Integral inequalities for generalized harmonically convex functions in fuzzy-interval-valued settings, Symmetry, 13 (2021), 2352. https://doi.org/10.3390/sym13122352 doi: 10.3390/sym13122352 |
[16] | J. E. Macías-Díaz, M. B. Khan, H. Alrweili, M. S. Soliman, Some fuzzy inequalities for harmonically $s$-convex fuzzy number valued functions in the second sense integral, Symmetry, 14 (2022), 1639. https://doi.org/10.3390/sym14081639 doi: 10.3390/sym14081639 |
[17] | M. B. Khan, J. E. Macías-Díaz, S. Treanta, M. S. Soliman, H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178 doi: 10.3390/fractalfract6040178 |
[18] | Y. F. Tian, Z. S. Wang, A new multiple integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 105 (2020), 106325. https://doi.org/10.1016/j.aml.2020.106325 doi: 10.1016/j.aml.2020.106325 |
[19] | Y. F. Tian, Z. S. Wang, Composite slack-matrix-based integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 120 (2021), 107252. https://doi.org/10.1016/j.aml.2021.107252 doi: 10.1016/j.aml.2021.107252 |
[20] | I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942. |
[21] | I. Iscan, On generalization of different type inequalities for harmonically quasi-convex functions via fractional integrals, Appl. Math. Comput., 275 (2016), 287–298. https://doi.org/10.1016/j.amc.2015.11.074 doi: 10.1016/j.amc.2015.11.074 |
[22] | M. A. Latif, S. S. Dragomir, E. Momoniat, Some Fejer type inequalities for harmonically-convex functions with applications to special means, Int. J. Anal. Appl., 13 (2017), 1–14. |
[23] | M. A. Noor, K. I. Noor, M. U. Awan, Some characterizations of harmonically log-convex functions, Proc. Jangjeon Math. Soc., 17 (2014), 51–61. |
[24] | S. I. Butt, S. Yousaf, A. Asghar, K. Khan, H. R. Moradi, New fractional Hermite-Hadamard-Mercer inequalities for harmonically convex function, J. Funct. Space., 2021 (2021), 1–11. http://doi.org/10.1155/2021/5868326 doi: 10.1155/2021/5868326 |
[25] | Y. M. Chu, S. Rashid, J. Singh, A novel comprehensive analysis on generalized harmonically-convex with respect to Raina's function on fractal set with applications, Math. Method. Appl. Sci., 2021. https://doi.org/10.1002/mma.7346 doi: 10.1002/mma.7346 |
[26] | R. S. Ali, A. Mukheimer, T. Abdeljawad, S. Mubeen, S. Ali, G. Rahman, K. S. Nisar, Some new harmonically convex function type generalized fractional integral inequalities, Fractal Fract., 5 (2021), 54. https://doi.org/10.3390/fractalfract5020054 doi: 10.3390/fractalfract5020054 |
[27] | M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically $h$-convex functions, U. Politeh. Univ. Buch. Ser. A, 77 (2015), 5–16. |
[28] | D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New jensen and Hermite-Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. |
[29] | D. F. Zhao, T. Q. An, G. J. Ye, D. F. M. Torres, On Hermite-Hadamard type inequalities for harmonical $h$-convex interval-valued functions, Math. Inequal. Appl., 2019. |
[30] | M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, Inequalities associated with invariant harmonically $h$-convex functions, Appl. Math. Inform. Sci., 11 (2017), 1575–1583. http://doi.org/10.18576/amis/110604 doi: 10.18576/amis/110604 |
[31] | W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical $(h_1, h_2)$-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. http://doi.org/10.3390/math10162970 doi: 10.3390/math10162970 |
[32] | M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, A. G. Khan, Some new bounds for Simpson's rule involving special functions via harmonic $h$-convexity, J. Nonlinear Sci. Appl., 10 (2017), 1755–1766. |
[33] | B. Bin-Mohsin, M. U. Awan, M. A. Noor, M. Aslam, M. V. Mihvi, K. I. Noor, New Ostrowski like inequalities involving the functions having harmonic $h$-convexity property and application, J. Math. Inequal., 13 (2019), 621–644. http://doi.org/10.7153/jmi-2019-13-41 doi: 10.7153/jmi-2019-13-41 |
[34] | W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some $h$-Godunova-Levin function inequalities using center radius (cr) order relation, Fractal Fract., 6 (2022), 518. http://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518 |
[35] | M. V. Mihai, M. A. Noor, K. I. Noor, M. U. Awan, Some integral inequalities for harmonic $h$-convex functions involving hypergeometric functions, Appl. Math. Comput., 252 (2015), 257–262. https://doi.org/10.1016/j.amc.2014.12.018 doi: 10.1016/j.amc.2014.12.018 |
[36] | O. Almutairi, A. Kiliıcman, Some integral inequalities for $h$-Godunova-Levin preinvexity, Symmetry, 11 (2019), 1500. https://doi.org/10.3390/sym11121500 doi: 10.3390/sym11121500 |
[37] | X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions, J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324 |
[38] | W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $(h_1, h_2)$-Godunova-Levin functions, AIMS Mathematics, 7 (2022), 19372–19387. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064 |
[39] | I. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, M. De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Mathematics, 5 (2020), 6404–6418. https://doi.org/10.3934/math.2020412 doi: 10.3934/math.2020412 |
[40] | S. Markov, Calculus for interval functions of a real variable, Computing, 22 (1979), 325–337. |
[41] | I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 2013. https://doi.org/10.15672/HJMS.2014437519 doi: 10.15672/HJMS.2014437519 |
[42] | W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Mathematics, 8 (2022), 1696–1712. https://doi.org/10.3934/math.2023087 doi: 10.3934/math.2023087 |
[43] | M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically $h$-convex functions, U. Politeh. Univ. Buch. Ser. A., 77 (2015), 5–16. |
[44] | R. S. Ali, S. Mubeen, S. Ali, G. Rahman, J. Younis, A. Ali, Generalized Hermite-Hadamard-type integral inequalities for $h$-Godunova-Levin functions, J. Funct. Space., 2022 (2022), 9113745. https://doi.org/10.1155/2022/9113745 doi: 10.1155/2022/9113745 |
[45] | M. U. Awan, Integral inequalities for harmonically $s$-Godunova-Levin functions, Facta Univ. Ser. Math., 29 (2014), 415–424. |