Processing math: 90%
Research article

Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions

  • Received: 29 August 2022 Revised: 22 October 2022 Accepted: 02 November 2022 Published: 16 November 2022
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • The role of integral inequalities can be seen in both applied and theoretical mathematics fields. According to the definition of convexity, it is possible to relate both concepts of convexity and integral inequality. Furthermore, convexity plays a key role in the topic of inclusions as a result of its definitional behavior. The importance and superior applications of convex functions are well known, particularly in the areas of integration, variational inequality, and optimization. In this paper, various types of inequalities are introduced using inclusion relations. The inclusion relation enables us firstly to derive some Hermite-Hadamard inequalities (H.H-inequalities) and then to present Jensen inequality for harmonical h-Godunova-Levin interval-valued functions (GL-IVFS) via Riemann integral operator. Moreover, the findings presented in this study have been verified with the use of useful examples that are not trivial.

    Citation: Waqar Afzal, Khurram Shabbir, Savin Treanţă, Kamsing Nonlaopon. Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions[J]. AIMS Mathematics, 2023, 8(2): 3303-3321. doi: 10.3934/math.2023170

    Related Papers:

    [1] Nadiyah Hussain Alharthi, Mdi Begum Jeelani . Analyzing a SEIR-Type mathematical model of SARS-COVID-19 using piecewise fractional order operators. AIMS Mathematics, 2023, 8(11): 27009-27032. doi: 10.3934/math.20231382
    [2] Huda Alsaud, Muhammad Owais Kulachi, Aqeel Ahmad, Mustafa Inc, Muhammad Taimoor . Investigation of SEIR model with vaccinated effects using sustainable fractional approach for low immune individuals. AIMS Mathematics, 2024, 9(4): 10208-10234. doi: 10.3934/math.2024499
    [3] Maria M. Martignoni, Proton Rahman, Amy Hurford . Rotational worker vaccination provides indirect protection to vulnerable groups in regions with low COVID-19 prevalence. AIMS Mathematics, 2022, 7(3): 3988-4003. doi: 10.3934/math.2022220
    [4] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [5] Moh. Mashum Mujur Ihsanjaya, Nanang Susyanto . A mathematical model for policy of vaccinating recovered people in controlling the spread of COVID-19 outbreak. AIMS Mathematics, 2023, 8(6): 14508-14521. doi: 10.3934/math.2023741
    [6] Asma Hanif, Azhar Iqbal Kashif Butt, Tariq Ismaeel . Fractional optimal control analysis of Covid-19 and dengue fever co-infection model with Atangana-Baleanu derivative. AIMS Mathematics, 2024, 9(3): 5171-5203. doi: 10.3934/math.2024251
    [7] Mdi Begum Jeelani, Abeer S Alnahdi, Rahim Ud Din, Hussam Alrabaiah, Azeem Sultana . Mathematical model to investigate transmission dynamics of COVID-19 with vaccinated class. AIMS Mathematics, 2023, 8(12): 29932-29955. doi: 10.3934/math.20231531
    [8] Sara Salem Alzaid, Badr Saad T. Alkahtani . Real-world validation of fractional-order model for COVID-19 vaccination impact. AIMS Mathematics, 2024, 9(2): 3685-3706. doi: 10.3934/math.2024181
    [9] Shao-Wen Yao, Muhammad Farman, Maryam Amin, Mustafa Inc, Ali Akgül, Aqeel Ahmad . Fractional order COVID-19 model with transmission rout infected through environment. AIMS Mathematics, 2022, 7(4): 5156-5174. doi: 10.3934/math.2022288
    [10] Salah Boulaaras, Ziad Ur Rehman, Farah Aini Abdullah, Rashid Jan, Mohamed Abdalla, Asif Jan . Coronavirus dynamics, infections and preventive interventions using fractional-calculus analysis. AIMS Mathematics, 2023, 8(4): 8680-8701. doi: 10.3934/math.2023436
  • The role of integral inequalities can be seen in both applied and theoretical mathematics fields. According to the definition of convexity, it is possible to relate both concepts of convexity and integral inequality. Furthermore, convexity plays a key role in the topic of inclusions as a result of its definitional behavior. The importance and superior applications of convex functions are well known, particularly in the areas of integration, variational inequality, and optimization. In this paper, various types of inequalities are introduced using inclusion relations. The inclusion relation enables us firstly to derive some Hermite-Hadamard inequalities (H.H-inequalities) and then to present Jensen inequality for harmonical h-Godunova-Levin interval-valued functions (GL-IVFS) via Riemann integral operator. Moreover, the findings presented in this study have been verified with the use of useful examples that are not trivial.



    In 1965, Zadeh [56] presented fuzzy set theory. Later, Atanasov [10] generalized the notion of a fuzzy set and added the notion of an intuitionistic fuzzy set. One of the underlying issues of fuzzy arithmetic and fuzzy decision-making is the ranking of fuzzy numbers. Before the decision-maker can act, fuzzy numbers should be ranked. Real numbers can be ordered linearly by the connection or , however, and fuzzy numbers do not have this type of disparity. Because a probable distribution depicts fuzzy numbers, they could also overlap, making it challenging to determine whether one fuzzy number is either larger or smaller than another. A ranking component, which outlines each fuzzy number further into a real line in which a natural order persists, is an efficient method to order the fuzzy numbers. Ramesh [49] compares the notion of ranking function for making comparisons of normal fuzzy numbers.

    Abbasbandy and Hajjari [1] developed an innovative method for classifying trapezoidal fuzzy numbers. Wang and Kerre [52] proposed ordering features for fuzzy quantities. Angelov [8] adhered the Bellman and Zadeh [12] fuzzy optimization approach to intuitionistic fuzzy optimization. Numerous authors, including Jana and Roy [30], Mahapatra et al. [35], Dubey et al. [20], Mukherjee and Basu [39] have investigated the issue of optimization in an intuitionistic fuzzy background. One initiative to model the decision-making challenge with ambiguous quantities is to treat such imprecise quantities as intuitionistic fuzzy numbers. Consequently, the analogy of fuzzy numbers is required in the intuitionistic fuzzy optimisation problem. To create ranking systems for intuitionistic fuzzy numbers, comparisons of these erroneous numbers are necessary.

    Between intuitionistic fuzzy sets, Atanassov identified four fundamental distances: "The Hamming, normalised Hamming, Euclidean, and normalised Euclidean distances". Szmidt and Kacprzyk [51] added to this principle and suggested a new definition of distance between intuitionistic fuzzy sets. Wang and Xin [53] also investigated the striking similarities and detachments between intuitionistic fuzzy sets by presenting some new axioms. Besides this, Nayagam et al. [41] and Nehi [42] also have investigated the ranking of intuitionistic fuzzy numbers. Li [34] defined and implemented a ratio methodology for triangular intuitionistic fuzzy numbers to MADM. In literature, there are additional ranking techniques that have been developed by authors like Kumar and Kaur [33], Zhang and Yu [57], Esmailzadeh and Esmailzadeh [22] and Papakostas et al. [44]. By adding the valuation and ambiguity indexes of a trapezoidal intuitionistic fuzzy number, De and Das [19] were capable of describing a ranking function.

    The centroid approach of ranking intuitionistic fuzzy numbers was introduced by Nishad et al. [43]. Bharati and Singh [13,14] have explored intuitionistic fuzzy multiple objective programming and implemented it in agricultural planning and control. In a two-stage time-minimizing transportation concern, Bharati and Malhotra [15] used intuitionistic fuzzy sets. A novel algorithm for ranking intuitionistic fuzzy digits using the centroid method was put forth by Prakash et al. [45]. Mitchell [37] introduced some techniques for ranking intuitively fuzzy numbers. To use the intuitionistic fuzzy number's anticipated interval, Grzegorzewski [26] suggested a ranking and having-to-order method for intuitionistic fuzzy numbers. This is entirely predicated on the possible values for the fuzzy number first presented in Chiao [17]. An approach for ranking fuzzy numbers using the circumcenter of centroids and an indicator of modality was presented by Rao and Shankar [46]. Nasseri et al. [40] introduce an addition to using the circumcenter of centroids to rank fuzzy numbers with the aid of an area method. Roseline and Amirtharaj [50] presented intinuistic fuzzy numbers using distance methods that rely on the circumcenter of centroids.

    Additionally, Yager [54,55] expanded upon the idea of PFS and introduced a new definition known as a q-rung orthopair fuzzy set (q-ROFS). Chen [16] suggested m-polar FS, while Zhang [57] established bipolar FS and its relationships. Akram [2] investigated the theory, procedures, and applications of m-polar F graphs in DM. Riaz and Hashmi [47] proposed the cutting-edge idea of a linear Diophantine fuzzy set (LDFS). The research on LDFSs has recently expanded significantly. Iampan et al. [29] researched linear Diophantine fuzzy Einstein aggregation operators, spherical linear Diophantine fuzzy, and linear Diophantine fuzzy relations concerning decision-making issues. Developed a fresh method for the COVID-19 q-linear Diophantine fuzzy emergency decision support system. Algebraic linear Diophantine fuzzy structures were researched by Kamac [31]. Khan et al. [32] use triangular linear Diophantine fuzzy numbers to solve linear and quadratic equations. There are several authors who studied different applications of generalized fuzzy set models, for instance, Ali et al. [3,4,5,6], Ashraf et al. [9], Ayub et al. [11], Das and Granados [18], Farid et al. [23], Gupta et al. [27], Hashmi et al. [28], Mahmood et al. [36], Mohammad et al. [38] and Riaz and Farid [48].

    The domain principle of intuitionistic fuzzy set (IFS), interval-valued intuitionistic fuzzy set (IVIFS), Pythagorean fuzzy set (PFS), interval-valued Pythagorean fuzzy set (IVPFS) and q-rung orthopair fuzzy set (q-ROFS) have several actual applications in diverse fields. But researchers found some limitations to apply these concepts in much uncertain problems due to some issues related to membership and non-membership grades. For instance, in all these theories the researchers cannot choose 1 for membership and 1 for no-membership, if someone choose 1 for membership and 1 for no-membership the 1q+1q>1. In order to remedy the issues, firstly, Riaz and Hashmi introduce the novel idea of linear Diophantine fuzzy set (LDFS). In LDFS concept, they use the reference parameters similar to membership and non-membership grades makes it most accommodating in the direction of modeling uncertainties in actual existence issues. This research proposes a novel circumcenter-based algorithm for ranking LD fuzzy numbers. A trapezoid is initially divided into three segments in a trapezoidal LD fuzzy number, with the first, second, and third parts consecutively being a triangle, a rectangle, and a triangle. Next, the centroids of each of these three components are computed and their circumcenters. To rank LD fuzzy numbers, a ranking algorithm is lastly specified as the circumcenter position plus the original position. The centroid of the trapezoid, which serves as the trapezoid's balance point, is used as a point of reference in most ranking algorithms suggested in the literature. But since all of the centroids' vertices are fairly different from this point, the centroids' circumcenter could be considered a significantly balanced location.

    This section is dedicated to reviewing some fundamental ideas essential for comprehending the dominant model.

    Definition 2.1. [56] Consider a non-empty set X as the universe of discourse. Then a fuzzy set ξ in X is defined as follows:

    ξ={(θ,μξ(θ))|θX}, (2.1)

    where μξ(θ):X[0,1] is the membership degree.

    Definition 2.2. [24] A fuzzy set ξ defined on the universe set X is said to be normal iff μξ(θ)=1.

    Definition 2.3. [21] A fuzzy set ξ of universe set X is said to be convex iff

    μξ(λx+(1λ)y)min(μξ(x),μξ(y))  x,yXandλ[0,1]. (2.2)

    Definition 2.4. [21] A fuzzy set ξ of universe set X is a fuzzy number iff ξ is normal and convex on X.

    A real fuzzy number ξ is described as any fuzzy subset of the real line R with membership function μξ(θ) possessing the following properties:

    μξ is a continuous mapping from R to the closed interval [0,1].

    ξ is normalized : there exist tR such that μξ(t)=1.

    ● Convexity of ξ: i.e., u,wR, if tuw, then μξ(u)min{μξ(t),μξ(w)}.

    ● Boundness of support: i.e., SR and tR, if |t|S, then μξ(t)=0.

    Definition 2.5. [10] An intuitionistic fuzzy set ϖ in X defined by

    ϖ={(θ,αϖ(θ),βϖ(θ)):θX}, (2.3)

    where αϖ:X[0,1] and βϖ:X[0,1] are the membership degree and non-membership degree, respectively, with the condition:

    0αϖ(θ)+βϖ(θ)1. (2.4)

    The hesitation degree of IFS ϖ defined in X is denoted as πϖ(θ). It is determined by the following expression:

    πϖ(θ)=1αϖ(θ)βϖ(θ). (2.5)

    Definition 2.6. [47] Let X be the universe. A linear Diophantine fuzzy set (LDFS) £R on X is defined as follows:

    £R={(θ,ζτR(θ),ηυR(θ),α(θ),β(θ)):θX}, (2.6)

    where ζτR(θ),ηυR(θ),α(θ),β(θ)[0,1] such that

    0α(θ)ζτR(θ)+β(θ)ηυR(θ)1, θX,0α(θ)+β(θ)1. (2.7)

    The hesitation part can be written as

    ϱπR=1(α(θ)ζτR(θ)+β(θ)ηυR(θ)), (2.8)

    where ϱ is the reference parameter.

    Definition 2.7. [47] An absolute LDFS on X can be written as

    1£R={(θ,1,0,1,0:θX}, (2.9)

    and empty or null LDFS can be expressed as

    0£R={(θ,0,1,0,1:θX}. (2.10)

    Definition 2.8. [47] Let £R={(θ,ζτR(θ),ηυR(θ),α(θ),β(θ)):θX} be an LDFS. For any constants s,t,u,v[0,1] such that 0su+tv1 with 0u+v1, define the (s,t,u,v)-cut of £R as follows:

    £s,tRu,v={θX:ζτR(θ)s, ηυR(θ)t, α(θ)u, β(θ)v}. (2.11)

    Definition 2.9. [32] A LDF number £R is

    ● a LDF subset of the real line R,

    ● normal, i.e., there is any θ0R such that ζτR(θ0)=1, ηυR(θ0)=0, α(θ0)=1, β(θ0)=0,

    ● convex for the membership functions ζτR and α, i.e.,

    ζτR(λθ1+(1λ)θ2)min{ζτR(θ1),ζτR(θ2)} θ1,θ2R, λ[0,1],α(λθ1+(1λ)θ2)min{α(θ1),α(θ2)} θ1,θ2R, λ[0,1], (2.12)

    ● concave for the nonmembership functions ηυR and β, i.e.,

    ηυR(λθ1+(1λ)θ2)max{ηυR(θ1),ηυR(θ2)} θ1,θ2R, λ[0,1],β(λθ1+(1λ)θ2)max{β(θ1),β(θ2)} θ1,θ2R, λ[0,1]. (2.13)

    Definition 2.10. Let £R be a trapezoidal LDFN (TrapLDFN) on R with the following membership functions (ζτR and α) and non-membership functions (ηυR and β):

    ζτR(x)={0x<θ1xθ1θ3θ1θ1xθ31θ3xθ4θ6xθ6θ4θ4xθ60θ6<x, (2.14)
    ηυR(x)={0x<θ2θ3xθ3θ2θ2xθ30θ3xθ4xθ4θ5θ4θ4xθ50θ5<x, (2.15)

    where θ1θ2θ3θ4θ5θ6 for all xR. The figure of (θ1,θ2,θ3,θ4,θ5,θ6) is shown in Figure 1.

    α(x)={0x<θ2xθ2θ3θ2θ2xθ31θ3xθ4θ5xθ5θ4θ4xθ50θ5<x, (2.16)
    β(x)={0x<θ1θ3xθ3θ1θ1xθ30θ3xθ4xθ4θ6θ4θ4xθ60θ6<x, (2.17)
    Figure 1.  The figure of (θ1,θ2,θ3,θ4,θ5,θ6).

    where θ1θ2θ3θ4θ5θ6 for all xR. The figure of (θ1,θ2,θ3,θ4,θ5,θ6) is shown in Figure 2.

    Figure 2.  The figure of (θ1,θ2,θ3,θ4,θ5,θ6).

    The figure of £RTrapLDFN is shown in Figure 3.

    Figure 3.  The figure of £RTrapLDFN.

    Definition 2.11. Consider a TrapLDFN £RTrapLDFN={(θ1,θ2,θ3,θ4,θ5,θ6)(θ1,θ2,θ3,θ4,θ5,θ6). Then

    (i) s-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

    £sRTrapLDFN={xX:ζτR(x)s}=[ζτR(s)_,¯ζτR(s)]=[θ1+s(θ3θ1),θ6s(θ6θ4)], (2.18)

    (ii) t-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

    £tRTrapLDFN={xX:ηνR(x)t}=[ηνR(t)_,¯ηνR(t)]=[θ3t(θ3θ2),θ4+t(θ5θ4)], (2.19)

    (iii) u-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

    £uRTrapLDFN={xX:α(x)u}=[α(u)_,¯α(u)]=[θ2+u(θ3θ2),θ5u(θ5θ4)], (2.20)

    (iv) v-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

    £vRTrapLDFN={xX:β(x)v}=[β(v)_,¯β(v)]=[θ3v(θ3θ1),θ4+v(θ6θ4)]. (2.21)

    We can denote the (s,t,u,v)-cut of £RTrapLDFN={(θ1,θ2,θ3,θ4,θ5,θ6)(θ1,θ2,θ3,θ4,θ5,θ6) by

    (£RTrapLDFN)s,tu,v={([ζτR(s)_,¯ζτR(s)],[ηνR(t)_,¯ηνR(t)]),([α(u)_,¯α(u)],[β(v)_,¯β(v)]).

    We denote the set of all TrapLDFN on R by £RTrapLDFN(R).

    In this part, we determine the centroid location of the trapezoidal linear Diaphontine fuzzy number (TrapLDFN). The geometric core of a trapezoidal Linear diophantine fuzzy number is used in the process of ranking TrapLDFNs with a centroid index. Values on the horizontal and vertical axes correlate to the geometric centre.

    Consider a TrapLDFN £RTrapLDFN={(θ1,θ2,θ3,θ4,θ5,θ6)(θ1,θ2,θ3,θ4,θ5,θ6), whose membership function can be defined as follows:

    ζτR(x)={0x<θ1fLA(x)θ1xθ31θ3xθ4fRA(x)θ4xθ60θ6x, (3.1)
    ηυR(x)={0x<θ2gLA(x)θ2xθ30θ3xθ4gRA(x)θ4xθ50θ5x, (3.2)
    α(x)={0x<θ2fLA(x)θ2xθ31θ3xθ4fRA(x)θ4xθ50θ5x, (3.3)
    β(x)={0x<θ1gLA(x)θ1xθ30θ3xθ4gRA(x)θ4xθ60θ6x. (3.4)

    Where

    fLA:R[0,1], fRA:R[0,1],gLA:R[0,1],  gRA:R[0,1],fLA:R[0,1], fRA:R[0,1],gLA:R[0,1] and gRA:R[0,1], (3.5)

    are called the sides of TrapLDFN, where fLA, gRA, fLA and gRA are non-decreasing and fRA, gLA, fRA and gLA are non-increasing functions. Therefore the inverse functions of fLA, fRA, gLA, gRA, fLA, fRA, gLA and gRA exist which are also of the same nature. Let

    hLA:[0,1]R, hRA:[0,1]R,kLA:[0,1]R, kRA:[0,1]R,hLA:[0,1]R, hRA:[0,1]R,kLA:[0,1]R and kRA:[0,1]R, (3.6)

    be the inverse functions of fLA, fRA, gLA, gRA, fLA, fRA, gLA and gRA respectively. Then, hLA, hRA, kLA, kRA, hLA, hRA, kLA and kRA should be integrable on R. In the case of the above defined TrapLDFN, the above inverse functions can be analytically expressed as follows:

    hLA(y)=θ1+(θ3θ1)y0y1,hRA(y)=θ6+(θ4θ6)y0y1,kLA(y)=θ3+(θ2θ3)y0y1,kRA(y)=θ4+(θ5θ4)y0y1,hLA(y)=θ2+(θ3θ2)y0y1,hRA(y)=θ5+(θ4θ5)y0y1,kLA(y)=θ3+(θ1θ3)y0y1,kRA(y)=θ4+(θ6θ4)y0y1. (3.7)

    The centroid point of the TrapLDFN is determined as follows. First we find ζτR(x) and ηυR(x), also see the Figure 4.

    ζτR(x)=θ3θ1xfLA(x)dx+θ4θ3xdx+θ6θ4xfRA(x)dxθ3θ1fLA(x)dx+θ4θ3dx+θ6θ4fRA(x)dx,=θ3θ1x2xθ1θ3θ1dx+θ4θ3xdx+θ6θ4θ6xx2θ6θ4dxθ3θ1xθ1θ3θ1dx+θ4θ3dx+θ6θ4θ6xθ6θ4dx,=1θ3θ1[x33x22θ1]θ3θ1+[x22]θ4θ3+1θ6θ4[θ6x22x33]θ6θ41θ3θ1[x22θ1x]θ3θ1+[x]θ4θ3+1θ6θ4[θ6xx22]θ6θ4,ζτR(x)=13[θ26+θ24θ23θ21θ1θ3+θ6θ4θ6+θ4θ3θ1], (3.8)
    ηυR(x)=θ3θ2xgLA(x)dx+θ4θ3xdx+θ5θ4xgRA(x)θ3θ2gLA(x)dx+θ4θ3dx+θ5θ4gRA(x),=θ3θ2θ3xx2θ3θ2dx+θ4θ3xdx+θ5θ4x2θ4xθ5θ4dxθ3θ2θ3xθ3θ2+θ4θ3dx+θ5θ4xθ4θ5θ4dx,=1θ3θ2[θ3x22x33]θ3θ2+[x22]θ4θ3+1θ5θ4[x33θ4x22]θ5θ41θ3θ2[θ3xx22]θ3θ2+[x]θ4θ3+1θ5θ4[x22θ4x]θ5θ4,ηυR(x)=13[2θ25+2θ242θ232θ22+θ3θ2θ5θ4θ5+θ4θ3θ2]. (3.9)
    Figure 4.  The figure of (θ1,θ2,θ3,θ4,θ5,θ6).

    Similarly, we find α(x) and β(x), also see the Figure 5.

    α(x)=θ3θ2xfLA(x)dx+θ4θ3xdx+θ5θ4xfRA(x)dxθ3θ2fLA(x)dx+θ4θ3dx+θ5θ4fRA(x)dx,=θ3θ2x2θ2xθ3θ2dx+θ4θ3xdx+θ5θ4θ5xx2θ5θ4dxθ3θ2xθ2θ3θ2dx+θ4θ3dx+θ5θ4θ5xθ5θ4dx,=1θ3θ2[x33θ2x22]θ3θ2+[x22]θ4θ3+1θ5θ4[θ5x22x33]θ5θ41θ3θ2[x22θ2x]θ3θ2+[x]θ4θ3+1θ5θ4[θ5xx23]θ5θ4,α(x)=13[θ25+θ24θ23θ22θ2θ3+θ4θ5θ5+θ4θ3θ2], (3.10)
    β(x)=θ3θ1xgLA(x)dx+θ4θ3xdx+θ6θ4gRA(x)dxθ3θ1gLA(x)dx+θ4θ3dx+θ6θ4gRA(x)dx,=θ3θ1θ3xx2θ3θ1dx+θ4θ3xdx+θ6θ4x2θ4xθ6θ4dxθ3θ1θ3xθ3θ1dx+θ4θ3dx+θ6θ4xθ4θ6θ4dx,=1θ3θ1[θ3x22x33]θ3θ1+[x22]θ4θ3+1θ6θ4[x33θ4x22]θ6θ41θ3θ1[θ3xx22]θ3θ1+[x]θ4θ3++1θ6θ4[x22θ4x]θ6θ4,β(x)=13[2θ26+2θ242θ232θ21+θ3θ1θ6θ4θ6+θ4θ3θ1]. (3.11)
    Figure 5.  The figure of (θ1,θ2,θ3,θ4,θ5,θ6).

    Next, we find ζτR(y) and ηυR(y), also see the Figure 6.

    ζτR(y)=10yhRA(y)dy10yhLA(y)dy10hRA(y)dy10hLA(y)dy=10(θ6y+θ4y2θ6y2)dy10(θ1y+θ3y2θ1y2)dy10(θ6+θ4yθ6y)dy10(θ1+θ3yθ1y)dy=13[θ6+2θ4θ12θ3θ6+θ4θ1θ3]. (3.12)
    ηυR(y)=10ykRAdy10ykLA(y)dy10kRAdy10kLA(y)dy,=10(θ4y+θ5y2θ4y2)dy10(θ3y+θ2y2θ3y2)dy10(θ4+θ5yθ4y)dy10(θ3+θ2yθ3y)dy,ηυR(y)=13[2θ5+θ4θ32θ2θ5+θ4θ3θ2]. (3.13)
    Figure 6.  The figure of inverse of (θ1,θ2,θ3,θ4,θ5,θ6).

    Similarly, we find α(y) and β(y), also see the Figure 7.

    α(y)=10yhRA(y)dy10yhLA(y)dy10hRA(y)dy10hLA(y)dy,=10(θ5y+θ4y2θ5y2)dy10(θ2y+θ3y2θ2y2)dy10(θ5+θ4yθ5y)dy10(θ2+θ3yθ2y)dy,α(y)=13[θ5+2θ42θ3θ2θ5+θ4θ3θ2]. (3.14)
    β(y)=10ykRA(y)dy10ykLA(y)dy10kRA(y)dy10kLA(y)dy,=10(θ4y+θ6y2θ4y2)dy10(θ3y+θ1y2θ3y2)dy10(θ4+θ6yθ4y)dy10(θ3+θ1yθ3y)dy,=13[2θ6+θ4θ32θ1θ6+θ4θ3θ1]. (3.15)
    Figure 7.  The figure of inverse of (θ1,θ2,θ3,θ4,θ5,θ6).

    Then (ζτR(x),ζτR(y),α(x),α(y);ηυR(x),ηυR(y),β(x),β(y)) gives the centroid of the TrapLDFN.

    Definition 3.1. The ranking function of the TrapLDFN A is defined by

    (A)=[ζτR(x)ζτR(y)]2+[α(x)α(y)]2+[ηυR(x)ηυR(y)]2+[β(x)β(y)]2 (3.16)

    which is the Eculidean distance.

    As a special case, if in a TrapLDFN, we let θ3=θ4, then we will get a triangular LDFN with parameters θ1θ2θ3θ4θ5θ6 and θ1θ2θ3θ4θ5θ6. It is denoted by £RTriLDFN={(θ1,θ2,θ3,θ5,θ6)(θ1,θ2,θ3,θ5,θ6). The centroids of the membership functions and non-membership functions of the triangular LDFN respectively are defined as

    ζτR(x)=13[θ1+θ3+θ6],ηυR(x)=13[2θ2θ3+2θ5],α(x)=13[θ2+θ3+θ5],β(x)=13[2θ1θ3+2θ6], (3.17)

    and

    ζτR(y)=13,ηυR(y)=23,α(y)=13,β(y)=23. (3.18)

    Definition 3.2. The ranking function of the triangular LDFN A is defined by

    (A)=[ζτR(x)ζτR(y)]2+[α(x)α(y)]2+[ηυR(x)ηυR(y)]2+[β(x)β(y)]2, (3.19)

    which is the Eculidean distance.

    Example 3.3. Consider two TriLDFNs A={(3,5,7,8,13)(1,4,7,10,14) and B={(1,3,9,10,13)(0,4,9,13,15). Then using the proposed method we find (A),

    ζτR(x)=13[θ1+θ3+θ6]=13[3+7+13]=7.67 (3.20)
    ηυR(x)=13[2θ2θ3+2θ5]=13[107+16]=6.33 (3.21)
    α(x)=13[θ2+θ3+θ5]=13[4+7+10]=7 (3.22)
    β(x)=13[2θ1θ3+2θ6]=13[27+28]=7.67. (3.23)

    Also

    ζτR(y)=0.33, ηυR(y)=0.67, α(y)=0.33, β(y)=0.67. (3.24)

    Now,

    (A)=[ζτR(x)ζτR(y)]2+[α(x)α(y)]2+[ηυR(x)ηυR(y)]2+[β(x)β(y)]2=13.394. (3.25)

    Now, by using the proposed method we find (B),

    ζτR(x)=13[θ1+θ3+θ6]=13[1+9+13]=7.67 (3.26)
    ηυR(x)=13[2θ2θ3+2θ5]=13[69+20]=5.67 (3.27)
    α(x)=13[θ2+θ3+θ5]=13[4+9+13]=8.67 (3.28)
    β(x)=13[2θ1θ3+2θ6]=13[09+30]=7. (3.29)

    Also

    ζτR(y)=0.33, ηυR(y)=0.67, α(y)=0.33, β(y)=0.67. (3.30)

    Now,

    (B)=[ζτR(x)ζτR(y)]2+[α(x)α(y)]2+[ηυR(x)ηυR(y)]2+[β(x)β(y)]2=13.729. (3.31)

    As (A)<(B)A<B.

    A trapezoid's centroid is regarded as the shape's equilibrium position. The linear Diophantine fuzzy number's membership function trapezoid is divided into three planar figures. These three plane figures are in order, a triangle, a rectangle, and another triangle. The point of reference for defining the ordering of linear Diophantine fuzzy numbers is the circumcenter of the centroids of these three plane figures. Each centroid point (G1 of a triangle, G2 of a rectangle, and G3 of a triangle) is a balancing point for each unique planar figure, and the circumcenter of these centroid points is equidistant from each vertex, which is why this point was chosen as a point of reference (which are centroids). As a result, this point would serve as a more accurate reference point than the trapezoid's centroid.

    Take into consideration the trapezoidal linear Diophantine fuzzy number

    £RTrapLDFN={(θ1,θ2,θ3,θ4,θ5,θ6)(θ1,θ2,θ3,θ4,θ5,θ6). (4.1)

    The centroids of the three plane figures that make up the ζτR(x) are G1=(θ1+2θ33,13),G2=(θ3+θ42,12) and G3=(2θ4+θ63,13) and membership function are G1=(θ1+2θ33,13),G2=(θ3+θ42,12) and G3=(2θ4+θ63,13)) are non-collinear and form a triangle. Since the equation of line G1G3 is y=13 and G2 does not lie on line G1G3. Figure 8 displays the circumcenter of the centroids of ζτR(x).

    Figure 8.  Circumcenter of centroids of ζτR(x).

    Likewise, the centroids of the three plane figures that make up the membership function of α(x) are, in a similar manner, G1=(θ2+2θ33,13),G2=(θ3+θ42,12) and G3=(2θ4+θ53,13). G2 does not fall on the line G1G3, and its equation is y=13. G1,G2and G3 are therefore non-collinear and form a triangle. Figure 9 displays the circumcenter of the centroids of α(x).

    Figure 9.  Circumcenter of centroids of α(x).

    Finding the triangle's circumcenter is our next task. The general equation for a triangle's circumcentre with the coordinates (x1,y1), (x2,y2) and (x3,y3) is

    x=(y1y2)u+(y1y3)v2K, (4.2)
    y=(x1x2)u(x1x3)v2K, (4.3)

    where

    v=x21+y21x22y22, (4.4)
    u=x21+y21x23y23, (4.5)
    K=(x1x2)(y1y3)(x1x3)(y1y2). (4.6)

    The circumcenter ˆSA(ζτR(x))(¯x0,¯y0) of the triangle with vertices G1, G2 and G3 (as shown in Figure 8) of the membership function of the trapezoidal LDFN A={(θ1,θ2,θ3,θ4,θ5,θ6)(θ1,θ2,θ3,θ4,θ5,θ6) is

    ˆSA(ζτR(x))(¯x0,¯y0)=(θ1+2θ3+2θ4+θ66,(2θ1+θ33θ4)(2θ6+θ43θ3)+512), (4.7)

    Also, the circumcenter ˆSA(α(x))(¯x0,¯y0) of the triangle with vertices G1, G2and G3 (as shown in Figure 9) is

    ˆSA(α(x))(¯x0,¯y0)=(θ2+2θ3+2θ4+θ56,(2θ2+θ33θ4)(2θ5+θ43θ3)+512). (4.8)

    Separate the TrapLDFN trapezoid of non-membership functions into three plane figures as well. Again, a triangle, a rectangle, and a triangle successively make up these three plane figures. Additionally, the centroids of the three plane figures that make up the non-membership function ηνR(x) are G11=(θ2+2θ33,23), G12=((θ3+θ4)2,12) and G13=((2θ4+θ53,23) correspondingly. The line G11G13 is has the equation y=23, and G12 does not fall on this line.

    G11 ,G12 and G13 are therefore not collinear and form a triangle. Figure 10 displays the circumcenter of the centroids of ηνR(x). And the circumcenter ˆSA(ηνR(x)) of the triangle formed by the vertices G11 ,G12 and G13 of the non-membership function of the trapezoidal LDFN £RTrapLDFN={(θ1,θ2,θ3,θ4,θ5,θ6)(θ1,θ2,θ3,θ4,θ5,θ6) is

    ˆSA(ηνR(x))(¯x1,¯y1)=(θ2+2θ3+2θ4+θ56,(2θ2+θ33θ4)(2θ5θ4+3θ3)+712). (4.9)
    Figure 10.  Circumcenter of centroids of ηνR(x).

    Similarly, the centroids of the three plane figures of nonmembership function β(x) are G11=(θ1+2θ33,23), G12=((θ3+θ4)2,12) and G13=((2θ4+θ63,23) respectively. Equation of the line G11G13 is y=23 and G12 does not lie on the line G11G13. Therefore G11,G12 and G13 (as shown in Figure 11) are non-collinear and they form a triangle. The circumcenter of centroids of β(x) is

    ˆSA(β(x))(¯x1,¯y1)=(θ1+2θ3+2θ4+θ66,(2θ1+θ33θ4)(2θ6θ4+3θ3)+712). (4.10)
    Figure 11.  Circumcenter of centroids of β(x).

    Definition 4.1. The ranking function of the trapezoidal LDFN A={(θ1,θ2,θ3,θ4,θ5,θ6)(θ1,θ2,θ3,θ4,θ5,θ6) for membership function and non-membership function are defined as RA(ζτR(x))=¯x20+¯y20 , RA(α(x))=¯x20+¯y20 and RA(ηνR(x))=¯x12+¯y12, RA(β(x))=¯x21¯+y21, then

    RA=14(RA(ζτR(x))+RA(α(x))+RA(ηνR(x))+RA(β(x))). (4.11)

    As an exception, if we allow θ3=θ4 in a TrapLDFN, we will obtain a triangular LDFN with the parameters θ1θ2θ3θ4θ5θ6 and θ1θ2θ3θ4θ5θ6. It is indicated by £RTriLDFN={(θ1,θ2,θ3,θ5,θ6)(θ1,θ2,θ3,θ5,θ6). The circumcenters of the centroids for the triangular LDFN's membership function and nonmembership function are defined as follows.

    ˆSA(ζτR(x))(¯x0,¯y0)=(θ1+4θ3+θ66,4(θ1θ3)(θ6θ3)+512), (4.12)
    ˆSA(α(x))(¯x0,¯y0)=(θ2+4θ3+θ56,4(θ2θ3)(θ5θ3)+512), (4.13)

    and

    ˆSA(ηνR(x))(¯x1,¯y1)=(θ2+4θ3+θ56,4(θ2θ3)(θ5+θ3)+712), (4.14)
    ˆSA(β(x))(¯x1,¯y1)=(θ1+4θ3+θ66,4(θ1θ3)(θ6+θ3)+712). (4.15)

    Example 4.2. Consider two TriLDFN A= {(2,4,5,7,9)(1,3,5,8,10) and B = \left\{ \begin{array}{l} (3, 5, 7, 8, 9) \\ (2, 4, 7, 9, 9) \end{array} \right.. Then using the proposed method we find \Re (A),

    \begin{eqnarray} \hat{S}_{A_{(\zeta _{R}^{\tau }(x))}}(\overline{x_{0}}, \overline{y_{0}}) & = &\left( \frac{\theta _{1}+4\theta _{3}+\theta _{6}}{6}, \frac{4\left( \theta _{1}-\theta _{3}\right) \left( \theta _{6}-\theta _{3}\right) +5}{12} \right) = (5.16, -3.58), \end{eqnarray} (4.16)
    \begin{eqnarray} \hat{S}_{A_{(\alpha (x))}}(\overline{x_{0}^{\prime }}, \overline{ y_{0}^{\prime }}) & = &\left( \frac{\theta _{2}^{^{\prime }}+4\theta _{3}+\theta _{5}^{^{\prime }}}{6}, \frac{4\left( \theta _{2}^{^{\prime }}-\theta _{3}\right) \left( \theta _{5}^{^{\prime }}-\theta _{3}\right) +5}{ 12}\right) = (5.16, -1.58), \end{eqnarray} (4.17)
    \begin{eqnarray} \hat{S}_{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}}(\overline{x_{1}}, \overline{ y_{1}}) & = &\left( \frac{\theta _{2}+4\theta _{3}+\theta _{5}}{6}, \frac{ 4(\theta _{2}-\theta _{3})(-\theta _{5}+\theta _{3})+7}{12}\right) = (5.33, 1.25), \end{eqnarray} (4.18)
    \begin{eqnarray} \hat{S}_{A_{(\beta (x))}}(\overline{x_{1}^{\prime }}, \overline{y_{1}^{\prime }}) & = &\left( \frac{\theta _{1}^{^{\prime }}+4\theta _{3}+\theta _{6}^{\prime }}{6}, \frac{4(\theta _{1}^{^{\prime }}-\theta _{3})(-\theta _{6}^{\prime }+\theta _{3})+7}{12}\right) = (5.16, 7.25). \end{eqnarray} (4.19)

    Also,

    \begin{equation} \begin{array}{lllll} \Re _{A_{(\zeta _{R}^{\tau }(x))}} = \sqrt{\overline{x_{0}^{2}}+\overline{ y_{0}^{2}}} = 6.28, & & & & \Re _{A_{(\alpha (x))}} = \sqrt{\overline{ x_{0}^{\prime ^{2}}}+\overline{y_{0}^{\prime ^{2}}}} = 5.39, \\ \Re _{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}} = \sqrt{\overline{x_{1}}^{2}+ \overline{y_{1}}^{2}} = 5.47, & & & & \Re _{A_{(\beta (x))}} = \sqrt{ \overline{x_{1}^{\prime ^{2}}}\overline{+y_{1}^{\prime ^{2}}}} = 8.89. \end{array} \end{equation} (4.20)

    Now,

    \begin{equation} \Re _{A} = \frac{1}{4}\left( R_{A_{(\zeta _{R}^{\tau }(x))}}+R_{A_{(\alpha (x))}}+R_{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}}+R_{A_{(\beta (x))}}\right) = 6.50. \end{equation} (4.21)

    Now, using the proposed method we find \Re (B),

    \begin{eqnarray} \hat{S}_{B_{(\zeta _{R}^{\tau }(x))}}(\overline{x_{0}}, \overline{y_{0}}) & = &\left( \frac{\theta _{1}+4\theta _{3}+\theta _{6}}{6}, \frac{4\left( \theta _{1}-\theta _{3}\right) \left( \theta _{6}-\theta _{3}\right) +5}{12} \right) = (6.66, -2.25), \end{eqnarray} (4.22)
    \begin{eqnarray} \hat{S}_{B_{(\alpha (x))}}(\overline{x_{0}^{\prime }}, \overline{ y_{0}^{\prime }}) & = &\left( \frac{\theta _{2}^{^{\prime }}+4\theta _{3}+\theta _{5}^{^{\prime }}}{6}, \frac{4\left( \theta _{2}^{^{\prime }}-\theta _{3}\right) \left( \theta _{5}^{^{\prime }}-\theta _{3}\right) +5}{ 12}\right) = (6.83, -1.58), \end{eqnarray} (4.23)
    \begin{eqnarray} \hat{S}_{B_{(\eta _{\mathfrak{R}}^{\nu }(x))}}(\overline{x_{1}}, \overline{ y_{1}}) & = &\left( \frac{\theta _{2}+4\theta _{3}+\theta _{5}}{6}, \frac{ 4(\theta _{2}-\theta _{3})(-\theta _{5}+\theta _{3})+7}{12}\right) = (6.83, 1.25), \end{eqnarray} (4.24)
    \begin{eqnarray} \hat{S}_{B_{(\beta (x))}}(\overline{x_{1}^{\prime }}, \overline{y_{1}^{\prime }}) & = &\left( \frac{\theta _{1}^{^{\prime }}+4\theta _{3}+\theta _{6}^{\prime }}{6}, \frac{4(\theta _{1}^{^{\prime }}-\theta _{3})(-\theta _{6}^{\prime }+\theta _{3})+7}{12}\right) = (6.5, 3.91). \end{eqnarray} (4.25)

    Also,

    \begin{equation} \begin{array}{ccccc} \Re _{B_{(\zeta _{R}^{\tau }(x))}} = \sqrt{\overline{x_{0}^{2}}+\overline{ y_{0}^{2}}} = 6.97, & & & & \Re _{B_{(\alpha (x))}} = \sqrt{\overline{ x_{0}^{\prime ^{2}}}+\overline{y_{0}^{\prime ^{2}}}} = 7.01, \\ \Re _{B_{(\eta _{\mathfrak{R}}^{\nu }(x))}} = \sqrt{\overline{x_{1}}^{2}+ \overline{y_{1}}^{2}} = 6.94, & & & & \Re _{B_{(\beta (x))}} = \sqrt{ \overline{x_{1}^{\prime ^{2}}}\overline{+y_{1}^{\prime ^{2}}}} = 7.58. \end{array} \end{equation} (4.26)

    Now,

    \begin{equation} \Re _{B} = \frac{1}{4}\left( R_{B_{(\zeta _{R}^{\tau }(x))}}+R_{B_{(\alpha (x))}}+R_{B_{(\eta _{\mathfrak{R}}^{\nu }(x))}}+R_{B_{(\beta (x))}}\right) = 7.12. \end{equation} (4.27)

    As \Re (A) < \Re (B)\Longrightarrow A < B.

    The linear Diophantine fuzzy numbers have been identified in this research. In this study, we discovered the circumcenter of centroids of the membership function and non-membership function of a linear Diophantine fuzzy number. We also suggested a distance approach for ranking the linear Diophantine fuzzy number depending on the circumcenter of centroids. The suggested method gives the precise organization of linear Diophantine fuzzy numbers. It may be used to rank the linear Diophantine fuzzy numbers in order to deal with various fuzzy optimization issues. This method can be implemented to rank trapezoidal in addition to triangular fuzzy numbers and their counterparts. The following areas may be covered by our future projects:

    (ⅰ) Linear programming problems;

    (ⅱ) Differential equations;

    (ⅲ) Game theory;

    (ⅳ) Transportation problems;

    (ⅴ) Differential games.

    The authors would like to express their sincere thanks to the anonymous reviewers for their careful reading and constructive comments.

    The authors of this paper declare that they have no conflict of interest.



    [1] R. E. Moore, Interval analysis, Englewood Cliffs: Prentice-Hall, 1966.
    [2] D. Singh, B. A. Dar, Sufficiency and duality in non-smooth interval valued programming problems, J. Ind. Manag. Optim., 15 (2019), 647–665. https://doi.org/10.3934/jimo.2018063 doi: 10.3934/jimo.2018063
    [3] I. Ahmad, D. Singh, B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control. Cybern., 44 (2015), 19–45.
    [4] E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE T. Neur. Net., 20 (2009), 638–653. http://doi.org/10.1109/TNN.2008.2011267 doi: 10.1109/TNN.2008.2011267
    [5] J. M. Snyder, Interval analysis for computer graphics, In: Proceedings of the 19th annual conference on computer graphics and interactive techniques, ACM Siggraph, 1992,121–130.
    [6] N. A. Gasilov, Ş. Emrah Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Comput., 22 (2018), 3817–3828.
    [7] Y. Li, T. H. Wang, Interval analysis of the wing divergence, Aerosp. Sci. Technol., 74 (2018), 17–21. https://doi.org/10.1016/j.ast.2018.01.001 doi: 10.1016/j.ast.2018.01.001
    [8] H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2018), 1306–1318. https://doi.org/10.1007/S40314-016-0396-7} doi: 10.1007/S40314-016-0396-7
    [9] T. M. Costa, H. Román-Flores, Y. Chalco-Cano, Opial-type inequalities for interval-valued functions, Fuzzy Set. Syst., 358 (2019), 48–63. https://doi.org/10.1016/j.fss.2018.04.012 doi: 10.1016/j.fss.2018.04.012
    [10] S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [11] S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices, J. Math. Inequal., 11 (2017), 241–259. http://doi.org/10.7153/jmi-11-23 doi: 10.7153/jmi-11-23
    [12] M. A. Noor, C. Gabriela, M. U. Awan, Generalized fractional Hermite-Hadamard inequalities for twice differentiable onvex functions, Filomat, 29 (2015), 807–815. http://doi.org/10.2298/FIL1504807N doi: 10.2298/FIL1504807N
    [13] M. A. Noor, K. I. Noor, M. V. Mihai, M. U. Awan, Fractional Hermite-Hadamard inequalities for some classes of differentiable preinvex functions, U. Politeh. Univ. Buch. Ser. A, 78 (2016), 163–174.
    [14] G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. http://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001
    [15] M. B. Khan, P. O. Mohammed, J. A. T. Machado, J. L. G. Guirao, Integral inequalities for generalized harmonically convex functions in fuzzy-interval-valued settings, Symmetry, 13 (2021), 2352. https://doi.org/10.3390/sym13122352 doi: 10.3390/sym13122352
    [16] J. E. Macías-Díaz, M. B. Khan, H. Alrweili, M. S. Soliman, Some fuzzy inequalities for harmonically s-convex fuzzy number valued functions in the second sense integral, Symmetry, 14 (2022), 1639. https://doi.org/10.3390/sym14081639 doi: 10.3390/sym14081639
    [17] M. B. Khan, J. E. Macías-Díaz, S. Treanta, M. S. Soliman, H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178 doi: 10.3390/fractalfract6040178
    [18] Y. F. Tian, Z. S. Wang, A new multiple integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 105 (2020), 106325. https://doi.org/10.1016/j.aml.2020.106325 doi: 10.1016/j.aml.2020.106325
    [19] Y. F. Tian, Z. S. Wang, Composite slack-matrix-based integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 120 (2021), 107252. https://doi.org/10.1016/j.aml.2021.107252 doi: 10.1016/j.aml.2021.107252
    [20] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942.
    [21] I. Iscan, On generalization of different type inequalities for harmonically quasi-convex functions via fractional integrals, Appl. Math. Comput., 275 (2016), 287–298. https://doi.org/10.1016/j.amc.2015.11.074 doi: 10.1016/j.amc.2015.11.074
    [22] M. A. Latif, S. S. Dragomir, E. Momoniat, Some Fejer type inequalities for harmonically-convex functions with applications to special means, Int. J. Anal. Appl., 13 (2017), 1–14.
    [23] M. A. Noor, K. I. Noor, M. U. Awan, Some characterizations of harmonically log-convex functions, Proc. Jangjeon Math. Soc., 17 (2014), 51–61.
    [24] S. I. Butt, S. Yousaf, A. Asghar, K. Khan, H. R. Moradi, New fractional Hermite-Hadamard-Mercer inequalities for harmonically convex function, J. Funct. Space., 2021 (2021), 1–11. http://doi.org/10.1155/2021/5868326 doi: 10.1155/2021/5868326
    [25] Y. M. Chu, S. Rashid, J. Singh, A novel comprehensive analysis on generalized harmonically-convex with respect to Raina's function on fractal set with applications, Math. Method. Appl. Sci., 2021. https://doi.org/10.1002/mma.7346 doi: 10.1002/mma.7346
    [26] R. S. Ali, A. Mukheimer, T. Abdeljawad, S. Mubeen, S. Ali, G. Rahman, K. S. Nisar, Some new harmonically convex function type generalized fractional integral inequalities, Fractal Fract., 5 (2021), 54. https://doi.org/10.3390/fractalfract5020054 doi: 10.3390/fractalfract5020054
    [27] M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions, U. Politeh. Univ. Buch. Ser. A, 77 (2015), 5–16.
    [28] D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302.
    [29] D. F. Zhao, T. Q. An, G. J. Ye, D. F. M. Torres, On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions, Math. Inequal. Appl., 2019.
    [30] M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, Inequalities associated with invariant harmonically h-convex functions, Appl. Math. Inform. Sci., 11 (2017), 1575–1583. http://doi.org/10.18576/amis/110604 doi: 10.18576/amis/110604
    [31] W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical (h_1, h_2)-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. http://doi.org/10.3390/math10162970 doi: 10.3390/math10162970
    [32] M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, A. G. Khan, Some new bounds for Simpson's rule involving special functions via harmonic h-convexity, J. Nonlinear Sci. Appl., 10 (2017), 1755–1766.
    [33] B. Bin-Mohsin, M. U. Awan, M. A. Noor, M. Aslam, M. V. Mihvi, K. I. Noor, New Ostrowski like inequalities involving the functions having harmonic h-convexity property and application, J. Math. Inequal., 13 (2019), 621–644. http://doi.org/10.7153/jmi-2019-13-41 doi: 10.7153/jmi-2019-13-41
    [34] W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some h-Godunova-Levin function inequalities using center radius (cr) order relation, Fractal Fract., 6 (2022), 518. http://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
    [35] M. V. Mihai, M. A. Noor, K. I. Noor, M. U. Awan, Some integral inequalities for harmonic h-convex functions involving hypergeometric functions, Appl. Math. Comput., 252 (2015), 257–262. https://doi.org/10.1016/j.amc.2014.12.018 doi: 10.1016/j.amc.2014.12.018
    [36] O. Almutairi, A. Kiliıcman, Some integral inequalities for h-Godunova-Levin preinvexity, Symmetry, 11 (2019), 1500. https://doi.org/10.3390/sym11121500 doi: 10.3390/sym11121500
    [37] X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions, J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324
    [38] W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued (h_1, h_2)-Godunova-Levin functions, AIMS Mathematics, 7 (2022), 19372–19387. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064
    [39] I. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, M. De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Mathematics, 5 (2020), 6404–6418. https://doi.org/10.3934/math.2020412 doi: 10.3934/math.2020412
    [40] S. Markov, Calculus for interval functions of a real variable, Computing, 22 (1979), 325–337.
    [41] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 2013. https://doi.org/10.15672/HJMS.2014437519 doi: 10.15672/HJMS.2014437519
    [42] W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Mathematics, 8 (2022), 1696–1712. https://doi.org/10.3934/math.2023087 doi: 10.3934/math.2023087
    [43] M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions, U. Politeh. Univ. Buch. Ser. A., 77 (2015), 5–16.
    [44] R. S. Ali, S. Mubeen, S. Ali, G. Rahman, J. Younis, A. Ali, Generalized Hermite-Hadamard-type integral inequalities for h-Godunova-Levin functions, J. Funct. Space., 2022 (2022), 9113745. https://doi.org/10.1155/2022/9113745 doi: 10.1155/2022/9113745
    [45] M. U. Awan, Integral inequalities for harmonically s-Godunova-Levin functions, Facta Univ. Ser. Math., 29 (2014), 415–424.
  • This article has been cited by:

    1. Muhammad Abdurrahman Rois, Cicik Alfiniyah, Chidozie W. Chukwu, Dynamic analysis and optimal control of COVID-19 with comorbidity: A modeling study of Indonesia, 2023, 8, 2297-4687, 10.3389/fams.2022.1096141
    2. Le Cui, Diyi Chen, Chun Li, Xiaodong Tan, Xunfeng Yuan, A General Study on 3D Fractional Order Hexagon × n RLɑ Cβ Circuit Network, 2022, 10, 2169-3536, 55889, 10.1109/ACCESS.2022.3168720
    3. Xiao-Ping Li, Mahmoud H. DarAssi, Muhammad Altaf Khan, C.W. Chukwu, Mohammad Y. Alshahrani, Mesfer Al Shahrani, Muhammad Bilal Riaz, Assessing the potential impact of COVID-19 Omicron variant: Insight through a fractional piecewise model, 2022, 38, 22113797, 105652, 10.1016/j.rinp.2022.105652
    4. Hengki Tasman, Dipo Aldila, Putri A. Dumbela, Meksianis Z. Ndii, Faishal F. Herdicho, Chidozie W. Chukwu, Assessing the Impact of Relapse, Reinfection and Recrudescence on Malaria Eradication Policy: A Bifurcation and Optimal Control Analysis, 2022, 7, 2414-6366, 263, 10.3390/tropicalmed7100263
    5. Bevina D. Handari, Rossi A. Ramadhani, Chidozie W. Chukwu, Sarbaz H. A. Khoshnaw, Dipo Aldila, An Optimal Control Model to Understand the Potential Impact of the New Vaccine and Transmission-Blocking Drugs for Malaria: A Case Study in Papua and West Papua, Indonesia, 2022, 10, 2076-393X, 1174, 10.3390/vaccines10081174
    6. Endang Yuliani, Cicik Alfiniyah, Maureen L. Juga, Chidozie W. Chukwu, On the Modeling of COVID-19 Transmission Dynamics with Two Strains: Insight through Caputo Fractional Derivative, 2022, 6, 2504-3110, 346, 10.3390/fractalfract6070346
    7. E. Bonyah, M. L. Juga, L. M. Matsebula, C. W. Chukwu, On the Modeling of COVID-19 Spread via Fractional Derivative: A Stochastic Approach, 2023, 15, 2070-0482, 338, 10.1134/S2070048223020023
    8. Muhammad Abdurrahman Rois, Cicik Alfiniyah, Santi Martini, Dipo Aldila, Farai Nyabadza, Modeling and optimal control of COVID-19 with comorbidity and three-dose vaccination in Indonesia, 2024, 6, 25889338, 181, 10.1016/j.jobb.2024.06.004
    9. Olumuyiwa James Peter, Nadhira Dwi Fahrani, C.W. Chukwu, A fractional derivative modeling study for measles infection with double dose vaccination, 2023, 4, 27724425, 100231, 10.1016/j.health.2023.100231
    10. C.W. Chukwu, R.T. Alqahtani, C. Alfiniyah, F.F. Herdicho, , A Pontryagin’s maximum principle and optimal control model with cost-effectiveness analysis of the COVID-19 epidemic, 2023, 8, 27726622, 100273, 10.1016/j.dajour.2023.100273
    11. Dipo Aldila, Nadya Awdinda, Faishal F. Herdicho, Meksianis Z. Ndii, Chidozie W. Chukwu, Optimal control of pneumonia transmission model with seasonal factor: Learning from Jakarta incidence data, 2023, 9, 24058440, e18096, 10.1016/j.heliyon.2023.e18096
    12. G. M. Vijayalakshmi, P. Roselyn Besi, Ali Akgül, Fractional commensurate model on COVID‐19 with microbial co‐infection: An optimal control analysis, 2024, 45, 0143-2087, 1108, 10.1002/oca.3093
    13. Gaohui Fan, Ning Li, Application and analysis of a model with environmental transmission in a periodic environment, 2023, 31, 2688-1594, 5815, 10.3934/era.2023296
    14. G. M. Vijayalakshmi, P. Roselyn Besi, A. Kalaivani, G. Infant Sujitha, S. Mahesh, Microbial coinfections in COVID-19: mathematical analysis using Atangana–Baleanu–Caputo type, 2024, 7, 2520-8160, 4097, 10.1007/s41939-024-00418-2
    15. C.W. Chukwu, E. Bonyah, M.L. Juga, , On mathematical modeling of fractional-order stochastic for tuberculosis transmission dynamics, 2023, 11, 26667207, 100238, 10.1016/j.rico.2023.100238
    16. C.W. Chukwu, M.I. Utoyo, A. Setiawan, J.O. Akanni, Fractional model of HIV transmission on workplace productivity using real data from Indonesia, 2024, 225, 03784754, 1089, 10.1016/j.matcom.2023.11.014
    17. CW Chukwu, S. Y. Tchoumi, Z. Chazuka, M. L. Juga, G. Obaido, Assessing the impact of human behavior towards preventative measures on COVID-19 dynamics for Gauteng, South Africa: a simulation and forecasting approach, 2024, 9, 2473-6988, 10511, 10.3934/math.2024514
    18. Puntipa Pongsumpun, Puntani Pongsumpun, I-Ming Tang, Jiraporn Lamwong, The role of a vaccine booster for a fractional order model of the dynamic of COVID-19: a case study in Thailand, 2025, 15, 2045-2322, 10.1038/s41598-024-80390-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1678) PDF downloads(99) Cited by(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog