Citation: Ali Khalili, Maryam Amyari. $\mathcal{A}$-valued norm parallelism in Hilbert $\mathcal{A}$-modules[J]. AIMS Mathematics, 2019, 4(3): 527-533. doi: 10.3934/math.2019.3.527
[1] | L. Arambašića and R. Rajić, On some norm equalities in pre-Hilbert C*modules, Linear Algebra Appl., 414 (2006), 19-28. doi: 10.1016/j.laa.2005.09.006 |
[2] | L. Arambasic and R. Rajic, On the C*valued triangle equality and inequality in Hilbert C*-modules, Acta Math. Hung., 119 (2008), 373-380. doi: 10.1007/s10474-007-7055-9 |
[3] | D. Bakic and B. Guljas, On a class of module maps of Hilbert C*-modules, Math. Commun., 7 (2002), 177-192. |
[4] | T. Bottazzi, C. Conde, M. S. Moslehian, et al. Orthogonality and parallelism of operators on various Banach spaces, J. Aust. Math. Soc., 106 (2019), 160-183. doi: 10.1017/S1446788718000150 |
[5] | E. C. Lance, Hilbert C*-modules, A Toolkit for Operator Algebraists, Cambridge Univ. Press, Cambridge, 1995.6. M. Mehrazin, M. Amyari, M. Erfanian Omidvar, A new type of Numerical radius of operators on Hilbert C*-modules, Rendiconti del Circolo Matematico di Palermo Series 2, 2018. Available from: http://doi.org/10.1007/s12215-018-0385-3. |
[6] | 7. A. Zamani, The operator-valued parallelism, Linear Algebra Appl., 505 (201, 282-295. doi: 10.1016/j.laa.2016.05.004 |
[7] | 8. A. Zaman, M. S. Moslehian, Norm-parallelism in the geometry of Hilbert C*-modules, Indagat. Math. New. Ser., 2(2016), 266-281. doi: 10.1016/j.indag.2015.10.008 |
[8] | 9. A. Zamani, M. S. Moslehian, M. Frank, Angle preserving mappings, Z. Anal. Anwend., 34 (2015), 4-500. doi: 10.4171/ZAA/1551 |