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Abstract: We define the concept of A-valued norm parallelism in a Hilbert A-module, and then
we investigate some properties of this notion and present some characterizations of A-valued norm
parallelism in a HilbertA-module. We also show that if X and Y are two inner productA-modules and
T : X → Y is a linear map such that |T x| = |x|, then T preserves A-valued norm parallelism in both
directions.

Keywords: HilbertA-modules; preserving map; parallelism;A-valued norm parallelism
Mathematics Subject Classification: 46L08, 46L05

1. Introduction and preliminary

LetA be a C∗-algebra. An inner productA-module is a linear space X, which is a rightA-module
with a map 〈., .〉 : X × X → A that satisfies the following properties:

(i) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0;
(ii) 〈x, λy + z〉 = λ〈x, y〉 + 〈x, z〉;
(iii) 〈x, ya〉 = 〈x, y〉a;
(vi) 〈x, y〉∗ = 〈y, x〉, where x, y, z ∈ X, a ∈ A, and λ ∈ C.

If X is complete with respect to the norm ‖x‖ = ‖〈x, x〉‖
1
2 for each x ∈ X, then it is called a Hilbert

A-module or a Hilbert C∗-module over A. Complex Hilbert spaces can be regarded as left Hilbert
C-modules. Any C∗-algebraA can be regarded as a Hilbert C∗-module over itself via 〈a, b〉 = a∗b. For
more details in Hilbert C∗-modules, we refer the reader to [1, 2, 5, 6].
Let (X, ‖ · ‖) be a normed space and let x, y ∈ X. We say that x is norm-parallel to y, denoted by x‖y, if

‖x + λy‖ = ‖x‖ + ‖y‖ for some λ ∈ T = {α ∈ C : |α| = 1} (1.1)

It is obvious that the norm-parallelism is symmetric and R-homogeneous, that is, x‖y ⇔ αx‖βy
for all α, β ∈ R, but not transitive, that is, x‖y and y‖z do not imply x‖z in general; see [8, Example
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2.7]. It is known that in the setting of inner product spaces, the norm parallelism is equivalent to the
linear dependence. In the case of normed linear spaces, two linearly dependent vectors are norm-
parallel, but the converse is false in general. For example, consider the space (R2, ‖(·, ·)‖), where
‖(x, y)‖ = max{ |x+y|

2 , |x−y|
2 } for x, y ∈ R2. Let x = (1, 2), y = (−1, 0), and λ = −1. Then ‖x + λy‖ =

‖(2, 2)‖ = 2 =
3
2

+
1
2

= ‖x‖ + ‖y‖, so that x‖y but they are not linearly dependent. The interested reader
is referred to references [4, 7–9] for more details in norm-parallelism.

Theorem 1.1. Let X be an inner product space and let x, y ∈ X. The following statements are
equivalent:

(i) x‖y;
(ii) |〈x, y〉| = ‖x‖‖y‖.

Proof. (i)⇒ (ii): Let x‖y. Then ‖x + λy‖ = ‖x‖ + ‖y‖ for some λ ∈ T.

(‖x‖ + ‖y‖)2 = ‖x + λy‖2 = 〈x + λy, x + λy〉 = ‖x‖2 + 2Reλ〈x, y〉 + ‖y‖2

≤ ‖x‖2 + 2|〈x, y〉| + ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2.

Thus |〈x, y〉| = ‖x‖‖y‖.
(ii)⇒ (i): Suppose |〈x, y〉| = ‖x‖‖y‖. There exists λ ∈ C such that |λ| = 1 and

|〈x, y〉| = λ〈x, y〉 = 〈λx, y〉.

Then ‖x‖‖y‖ = 〈λx, y〉. In fact, Re〈λx, y〉 = ‖x‖‖y‖. Therefore

‖x + λy‖2 = ‖x‖2 + 2Re〈λx, y〉 + ‖y‖2 = ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2 = (‖x‖ + ‖y‖)2.

Hence ‖x + λy‖ = ‖x‖ + ‖y‖ for some λ ∈ T. �

Let X be an inner product space and let x, y ∈ X. We say that a map f : X → X preserves
parallelism if x‖y implies f (x)‖ f (y). It is known that parallelism preserving maps may be nonlinear
and discontinuous.

Remark 1.1. Suppose that X and Y are two inner product spaces and that f : X → Y is a
homogeneous map ( i.e., f (αx) = α f (x) for each α ∈ C). Then f preserves parallelism. In fact, if
x, y ∈ X with x‖y, then there is α ∈ C such that x = αy, so f (x) = f (αy) = α f (y) (i.e., f (x) and f (y)
are linearly dependent). Thus f (x)‖ f (y). On the other hand, if f is an injective homogeneous map,
then f preserves parallelism in both directions. Therefor if f (x)‖ f (y), then f (x) = α f (y) or
f (x) = f (αy) for some α ∈ C. Then x = αy for some α ∈ C, that is, x‖y.

Theorem 1.2. Suppose that X and Y are two normed spaces and that T : X → Y is a linear isometry
map. Then T preserves parallelism in both directions,

x‖y⇔ T x‖Ty (x, y ∈ X).
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Proof. Let x‖y. Then ‖x + λy‖ = ‖x‖ + ‖y‖ for some λ ∈ T. On the other hand,

‖x‖ + ‖y‖ = ‖x + λy‖ = ‖T (x + λy)‖ ≤ ‖T x‖ + ‖Ty‖ = ‖x‖ + ‖y‖.

Hence ‖T x + λTy‖ = ‖T x‖ + ‖Ty‖ for some λ ∈ T, that is, T x‖Ty. The converse is trivial. �

In the following theorem, we reach a relation between two unknown functions that preserve
parallelism.

Theorem 1.3. Let X and Y be two inner product spaces and let f , g : X → Y be two homogeneous
maps such that

x‖y⇒ f (x)‖g(y) (1.2)

for x, y ∈ X. Then
|〈 f (x), g(x)〉| = ‖x‖2‖y‖−2‖ f (y)‖‖g(y)‖.

Proof. Take u =
x
‖x‖

and v =
y
‖y‖

. Then ‖u‖ = ‖v‖ = 1 and |〈u, v〉| = 1 = ‖u‖‖v‖, that is, u‖v. Thus,

there exists α ∈ C such that u = αv and

1 = ‖u‖‖v‖ = |〈u, v〉| = |〈αv, v〉| = |α|‖v‖.

Hence α ∈ T and v = αu.
Therefore |〈 f (u), g(αu〉| = ‖ f (αv)‖‖g(v)‖ and then |〈 f (u), g(u)〉| = ‖ f (v)‖‖g(v)‖. In other words,

|〈 f (
x
‖x‖

), g(
x
‖x‖

)〉| = ‖ f (
y
‖y‖

)‖‖g(
y
‖y‖

)‖.

We get
|〈 f (x), g(x)〉| = ‖x‖2‖y‖−2‖ f (y)‖‖g(y)‖.

Moreover, fix y0 ∈ X. For each x ∈ X, if x‖y0, then

|〈 f (x), g(x)〉| = k‖x‖2,

where k = ‖y0‖
−2‖ f (y0)‖‖g(y0)‖. �

2. A-valued norm parallelism in HilbertA-modules

Let X be an inner productA-module. For x ∈ X, the unique square root of positive element 〈x, x〉 is
denoted by |x| and is called theA-valued norm, where |x|2 = 〈x, x〉.

In fact, theA-valued norm is not a norm, for example, the triangle inequality |x + y| ≤ |x| + |y| does
not hold in general; see [5].

In this section, we define a new definition of parallelism viaA-valued norm. The set of all positive
elements of A is denoted by A+. If a ∈ A, then the absolute value of a is defined by |a| = (a∗a)

1
2 .

Let A be a unital C∗-algebra. Then a ∈ A is unitary if aa∗ = a∗a = 1. The center of A is defined by
Z(A) = {a ∈ A ab = ba for each b ∈ A}. The set of all positive elements of A that contained in
Z(A) is denoted by Z(A)+.
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Definition 2.1. Let X be a HilbertA-module and let x, y ∈ X. We say that x isA-parallel to y, denoted
by x ↑ y, if

|x + λy| = |x| + |y| f or some λ ∈ T.

Let X be a HilbertA-module and let x, y ∈ X be linearly dependent.
Then there exists α ∈ C \ {0} such that y = αx. By letting λ = α

|α|
, we have

|x + λy| = |x + |α|x| = (1 + |α|)|x| = |x| + |y|.

Hence x ↑ y.

The converse is not true in general. For example, if R =

[
2 0
0 0

]
and I =

[
1 0
0 1

]
are considered as

two elements of Hilbert C-module M2(C), then for λ = 1, we reach |R + I| = |R| + |I|, that is, R ↑ I.
However, R and I are linearly independent.

Theorem 2.2. [2, Theorem 2.3 ] Let X be a Hilbert A-module and let x, y ∈ X. Then the following
statements are equivalent:

(i) x ↑ y;
(ii) 〈x, λy〉 = |x||y| f or some λ ∈ T.

Recall that, in an inner product space, two elements x and y are orthogonal, if 〈x, y〉 = 0.

Theorem 2.3. Let X be a Hilbert A-module and let x, y ∈ X such that x ↑ y. Then the following
properties hold:

(i) xa ↑ yb for a, b ∈ Z(A)+.
(ii) x ↑ (x + λy) for some λ ∈ T.
(iii) If |x| ∈ Z(A), then x ⊥ (x|y| − λy|x|) for some λ ∈ T.

Proof. (i) Suppose a, b ∈ Z(A)+. Then

|xa|2 = 〈xa, xa〉 = a∗〈x, x〉a = a〈x, x〉a = a|x|2a = (|x|a)2.

So |xa| = |x|a = a|x| and similarly |yb| = |y|b = b|y|. Now 〈xa, λyb〉 = a∗〈x, λy〉b = a|x||y|b = |xa||yb| for
some λ ∈ T. Thus xa ↑ yb.

(ii) Let 〈x, λy〉 = |x||y| for some λ ∈ T. Then 〈x, x+λy〉 = 〈x, x〉+〈x, λy〉 = |x|2 + |x||y| = |x|(|x|+ |y|)| =
|x||x + λy|. Hence x ↑ (x + λy).

(iii) Since x ↑ y, we have 〈x, λy〉 = |x||y| for some λ ∈ T.
Thus

〈x, x|y| − λy|x|〉 = 〈x, x〉|y| − 〈x, λy〉|x|

= |x|2|y| − |x|2|y| = 0,

where |x| ∈ Z(A)+. �

Remark 2.1. LetA be a unital C∗-algebra and let a ∈ A be unitary. If X is a HilbertA-module and
x, y ∈ X, then x ↑ y if and only if xa ↑ ya, where a ∈ Z(A)+. If x, y ∈ X, then Theorem 2.3 implies that
xa ↑ ya.

Conversely, if xa ↑ ya, then 〈xa, λya〉 = |xa||ya| for some λ ∈ T.
Hence 〈x, λy〉 = a∗〈x, λy〉a = 〈xa, λya〉 = |xa||ya| = a∗|x||y|a = a∗a|x||y| = |x||y|, so x ↑ y.
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In the following result, we state the relation between theA-parallelism andA-linear dependence in
the setting of HilbertA-module.

Corollary 2.4. Let X be a Hilbert A-module and let x, y ∈ X. If A is unital and |y| = 1, then x ↑ y if
and only if x = λy|x| for some λ ∈ T.

Proof. If x ↑ y, then 〈x, λy〉 = |x| for some λ ∈ T. We get

〈x − λy|x|, x − λy|x|〉 = 〈x, x〉 − 〈x, λy〉|x| − |x|〈λy, x〉 + |x|2

= |x|2 − |x|2 − |x|2 + |x|2 = 0.

Hence x = λy|x|.
Conversely, if x = λy|x|, then 〈x, λy〉 = 〈λy|x|, λy〉 = |λ|2|x||y|2 = |x| for some λ ∈ T, and so x ↑ y. �

We state some facts about theA-valued norm from [9, Lemma 4.1].

Remark 2.2. Let x ⊥ y. Then x ↑ y if and only if 〈x, λy〉 = |x||y| for some λ ∈ T, and this holds if
and only if |x||y| = 0 and this occurs if and only if |x + λy| = |x − λy| and finally the last equality holds
if and only if |x + λya| = |x − λya| for all a ∈ Z(A)+.

Proposition 2.5. Let X and Y be two HilbertA-modules and let T : X → Y be a linear map such that
|T x| = |x|. Then T preserves ↑ in both directions.

Proof. Suppose x ↑ y. Then |x + λy| = |x| + |y| for some λ ∈ T. Therefor |T (x) + λT (y)| = |T (x + λy)| =
|x + λy| = |x| + |y| = |T (x)| + |T (y)|. So T preserves ↑ in both directions . �

Definition 2.6. LetA be a C∗-algebra and let a, b ∈ A. We say that a ↑ b if

|a + λb| = |a| + |b| f or some λ ∈ T.

Theorem 2.7. [2, Theorem 2.1 ] LetA be a C∗-algebra and let a, b ∈ A. Then the following statements
are equivalent:

(i) a ↑ b;
(ii) λa∗b = |a||b| f or some λ ∈ T.
Moreover if A is unital and a + λb is invertible in A, then a ↑ b if and only if there is a unitary

u ∈ A such that a = u|a| and λb = u|b|. In fact, u = (a + λb)|a + λb|−1.

Recall that, if a and b are two positive elements ofA such that a ∈ Z(A), then |a + b| = |a| + |b|.

Theorem 2.8. Let X be a Hilbert A-module and let x, y ∈ X such that |x| ∈ Z(A). If x ↑ y, then
〈x, x〉 ↑ 〈x, y〉 inA.

Proof. Suppose x ↑ y. Then 〈x, λy〉 = |x||y| f or some λ ∈ T. Thus

|〈x, x〉 + λ〈x, y〉| = |〈x, x + λy〉| =
∣∣∣|x||x + λy|

∣∣∣ (since x ↑ (x + λy))

=
∣∣∣|x|(|x| + |y|)∣∣∣ (since x ↑ y)

=
∣∣∣|x|2 + |x||y|

∣∣∣
=

∣∣∣|x|2∣∣∣ +
∣∣∣|x||y|∣∣∣

=
∣∣∣〈x, x〉∣∣∣ +

∣∣∣〈x, λy〉
∣∣∣ = |〈x, x〉| + |〈x, y〉|.

Hence 〈x, x〉 ↑ 〈x, y〉.
�
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Example 2.9. Let X = A = M2(R). Then A is a Hilbert A-module. Let S =

[
1 0
0 0

]
and I =[

1 0
0 1

]
. For λ = 1, we have 〈S , I〉 = S ∗I = S I = |S ||I|, that is, S ↑ I. On the other hand, 〈S , S 〉 ↑ 〈I, I〉

inA, since for λ = 1, we have 〈S , S 〉∗〈I, I〉 = S S ∗I = |〈S , S 〉||〈I, I〉|.

Now, we borrow the following definition from [3].

Definition 2.10. Suppose that X and Y are two Hilbert C∗-modules over C∗-algebras A and B,
respectively. Let ϕ : A → B be a morphism of C∗-algebras. A map ψ : X → Y is a ϕ-morphism of
Hilbert C∗-modules if 〈ψ(x), ψ(y)〉 = ϕ(〈x, y〉) for all x, y ∈ X.

It is also easy to see that each ϕ-morphism is a linear map and ψ(xa) = ψ(x)ϕ(a) for each x ∈ X,
and a ∈ A.

Remark 2.3. Suppose that X and Y are two Hilbert C∗-modules over C∗-algebras A and B,
respectively. If A is a C∗-subalgebra of B and ϕ : A → B is the inclusion map, then Ψ preserves ↑ in
both directions.
Since |ψ(x)|2 = 〈ψ(x), ψ(x)〉 = ϕ(〈x, x〉) = ϕ(|x|2) = |x|2, Theorem 2.5 implies that ψ preserves ↑ in
both directions.
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