Citation: Carina Geldhauser, Marco Romito. The point vortex model for the Euler equation[J]. AIMS Mathematics, 2019, 4(3): 534-575. doi: 10.3934/math.2019.3.534
[1] | Ye Shuang, Feng Qi . Integral inequalities of Hermite-Hadamard type for GA-F-convex functions. AIMS Mathematics, 2021, 6(9): 9582-9589. doi: 10.3934/math.2021557 |
[2] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[3] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[4] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[5] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[6] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
[7] | Wenbing Sun, Rui Xu . Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals. AIMS Mathematics, 2021, 6(10): 10679-10695. doi: 10.3934/math.2021620 |
[8] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[9] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[10] | Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch . Refined estimates and generalization of some recent results with applications. AIMS Mathematics, 2021, 6(10): 10728-10741. doi: 10.3934/math.2021623 |
The radial addition K˜+L of star sets K and L can be defined by
ρ(K˜+L,⋅)=ρ(K,⋅)+ρ(L,⋅), |
where a star set is a compact set that is star-shaped at o and contains o and ρ(K,⋅) denotes the radial function of star set K. The radial function is defined by
ρ(K,u)=max{c≥0:cu∈K}, | (1.1) |
for u∈Sn−1, where Sn−1 denotes the surface of the unit ball centered at the origin. The initial study of the radial addition can be found in [1, p. 235]. K is called a star body if ρ(K,⋅) is positive and continuous, and let Sn denote the set of star bodies. The radial addition and volume are the basis and core of the dual Brunn-Minkowski theory (see, e.g., [2,3,4,5,6,7,8,9,10]). It is important that the dual Brunn-Minkowski theory can count among its successes the solution of the Busemann-Petty problem in [3,11,12,13,14]. Recently, it has turned to a study extending from Lp-dual Brunn-Minkowski theory to Orlicz dual Brunn-Minkowski theory. The Orlicz dual Brunn-Minkowski theory and its dual have attracted people's attention [15,16,17,18,19,20,21,22,23,24,25,26,27,28].
For K∈Sn and u∈Sn−1, the half chord of K in the direction u is defined by
d(K,u)=12(ρ(K,u)+ρ(K,−u)). |
If there exists a constant λ>0 such that d(K,u)=λd(L,u), for all u∈Sn−1, then star bodies K,L are said to have similar chord (see Gardner [1] or Schneider [29]). Lu [30] introduced the i-th chord integral of star bodies: For K∈Sn and 0≤i<n, the i-th chord integral of K, is denoted by Bi(K), is defined by
Bi(K)=1n∫Sn−1d(K,u)n−idS(u). | (1.2) |
Obviously, for i=0, Bi(K) becomes the chord integral B(K).
The main aim of the present article is to generalize the chord integrals to Orlicz space. We introduce a new affine geometric quantity which we shall call Orlicz mixed chord integrals. The fundamental notions and conclusions of the chord integral and related isoperimetric inequalities for the chord integral are extended to an Orlicz setting. The new inequalities in special cases yield the Lp-dual Minkowski and Lp-dual Brunn-Minkowski inequalities for the Lp-mixed chord integrals. The related concepts and inequalities of Lp-mixed chord integrals are derived. As extensions, Orlicz multiple mixed chord integrals and Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals are also derived.
In Section 3, we introduce the following new notion of Orlicz chord addition of star bodies.
Orlicz chord addition Let K and L be star bodies, the Orlicz chord addition of K and L, is denoted by Kˇ+ϕL, is defined by
ϕ(d(K,u)d(Kˇ+ϕL,u),d(L,u)d(Kˇ+ϕL,u))=1, | (1.3) |
where u∈Sn−1, and ϕ∈Φ2, which is the set of convex functions ϕ:[0,∞)2→(0,∞) that are decreasing in each variable and satisfy ϕ(0,0)=∞ and ϕ(∞,1)=ϕ(1,∞)=1.
The particular instance of interest corresponds to using (1.3) with ϕ(x1,x2)=ϕ1(x1)+εϕ2(x2) for ε>0 and some ϕ1,ϕ2∈Φ, which are the sets of convex functions ϕ1,ϕ2:[0,∞)→(0,∞) that are decreasing and satisfy ϕ1(0)=ϕ2(0)=∞, ϕ1(∞)=ϕ2(∞)=0 and ϕ1(1)=ϕ2(1)=1.
In accordance with the spirit of Aleksandrov [31], Fenchel and Jessen's [32] introduction of mixed quermassintegrals, and introduction of Lutwak's [33] Lp-mixed quermassintegrals, we are based on the study of first-order variations of the chord integrals. In Section 4, we prove that the first order Orlicz variation of the mixed chord integral can be expressed as: For K,L∈Sn, ϕ1,ϕ2∈Φ, 0≤i<n and ε>0,
ddε|ε=0+Bi(Kˇ+ϕε⋅L)=(n−i)⋅1(ϕ1)′r(1)⋅Bϕ2,i(K,L), | (1.4) |
where (ϕ1)′r(1) denotes the value of the right derivative of convex function ϕ1 at point 1. In this first order variational equation (1.4), we find a new geometric quantity. Based on this, we extract the required geometric quantity, denoted by Bϕ,i(K,L) which we shall call Orlicz mixed chord integrals of K and L, as follows
Bϕ2,i(K,L)=1n−i⋅(ϕ1)′r(1)⋅ddε|ε=0+Bi(Kˇ+ϕε⋅L). | (1.5) |
We show also that the new affine geometric quantity has an integral representation as follows:
Bϕ,i(K,L)=1n∫Sn−1ϕ(d(L,u)d(K,u))d(K,u)n−idS(u). | (1.6) |
When ϕ(t)=t−p and p≥1, the new affine geometric quantity becomes a new Lp-mixed chord integrals of K and L, denoted by Bp,i(K,L), which as is in (2.7).
In Section 5, we establish an Orlicz Minkowski inequality for the mixed chord and Orlicz mixed chord integrals.
Orlicz Minkowski inequality for the Orlicz mixed chord integrals If K,L∈Sn, 0≤i<n and ϕ∈Φ, then
Bϕ,i(K,L)≥Bi(K)⋅ϕ((Bi(L)Bi(K))1/(n−i)). | (1.7) |
If ϕ is strictly convex, the equality holds if and only if K and L are similar chord.
When ϕ(t)=t−p and p≥1, (1.7) becomes a new Lp-Minkowski inequality (2.8) for the Lp-mixed chord integrals.
In Section 6, as an application, we establish an Orlicz Brunn-Minkowski inequality for the Orlicz chord additions and the mixed chord integrals:
Orlicz Brunn-Minkowski inequality for the Orlicz chord additions If K,L∈Sn, 0≤i<n and ϕ∈Φ2, then
1≥ϕ((Bi(K)Bi(Kˇ+ϕL))1/(n−i),(Bi(L)Bi(Kˇ+ϕL))1/(n−i)). | (1.8) |
If ϕ is strictly convex, the equality holds if and only if K and L are similar chord.
When ϕ(t)=t−p and p≥1, (1.8) becomes a new Lp-Brunn-Minkowski inequality (2.9) for the mixed chord integrals.
A new isoperimetric inequality for the chord integrals is given in Section 7. In Section 8, Orlicz multiple mixed chord integrals is introduced and Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals is established.
The setting for this paper is n-dimensional Euclidean space Rn. A body in Rn is a compact set equal to the closure of its interior. For a compact set K⊂Rn, we write V(K) for the (n-dimensional) Lebesgue measure of K and call this the volume of K. Associated with a compact subset K of Rn which is star-shaped with respect to the origin and contains the origin, its radial function is ρ(K,⋅):Sn−1→[0,∞) is defined by
ρ(K,u)=max{λ≥0:λu∈K}. |
Note that the class (star sets) is closed under union, intersection, and intersection with subspace. The radial function is homogeneous of degree −1, that is (see e.g. [1]),
ρ(K,ru)=r−1ρ(K,u), |
for all u∈Sn−1 and r>0. Let ˜δ denote the radial Hausdorff metric, as follows: if K,L∈Sn, then
˜δ(K,L)=|ρ(K,u)−ρ(L,u)|∞. |
From the definition of the radial function, it follows immediately that for A∈GL(n) the radial function of the image AK={Ay:y∈K} of K is given by (see e.g. [29])
ρ(AK,x)=ρ(K,A−1x), | (2.1) |
for all x∈Rn.
For Ki∈Sn,i=1,…,m, define the real numbers RKi and rKi by
RKi=maxu∈Sn−1d(Ki,u),andrKi=minu∈Sn−1d(Ki,u). | (2.2) |
Obviously, 0<rKi<RKi, for all Ki∈Sn. Writing R=max{RKi} and r=min{rKi}, where i=1,…,m.
If K1,…,Kn∈Sn, the mixed chord integral of K1,…,Kn, is denoted by B(K1,…,Kn), is defined by (see [30])
B(K1,…,Kn)=1n∫Sn−1d(K1,u)⋯d(Kn,u)dS(u). |
If K1=⋯=Kn−i=K, Kn−i+1=⋯=Kn=L, the mixed chord integral B(K1,…,Kn) is written as Bi(K,L). If L=B (B is the unit ball centered at the origin), the mixed chord integral Bi(K,L)=Bi(K,B) is written as Bi(K) and called the i-th chord integral of K. Obviously, For K∈Sn and 0≤i<n, we have
Bi(K)=1n∫Sn−1d(K,u)n−idS(u). | (2.3) |
If K1=⋯=Kn−i−1=K, Kn−i=⋯=Kn−1=B and Kn=L, the mixed chord integral B(K,…,K⏟n−i−1,B,…,B⏟i,L) is written as Bi(K,L) and called the i-th mixed chord integral of K and L. For K,L∈Sn and 0≤i<n, it is easy to see that
Bi(K,L)=1n∫Sn−1d(K,u)n−i−1d(L,u)dS(u). | (2.4) |
This integral representation (2.4), together with the Hölder inequality, immediately give the Minkowski inequality for the i-th mixed chord integral: If K,L∈Sn and 0≤i<n, then
Bi(K,L)n−i≤Bi(K)n−i−1Bi(L), | (2.5) |
with equality if and only if K and L are similar chord.
Definition 2.1 (The Lp-chord addition) Let K,L∈Sn and p≥1, the Lp chord addition ˇ+p of star bodies K and L, is defined by
d(Kˇ+pL,u)−p=d(K,u)−p+d(L,u)−p, | (2.6) |
for u∈Sn−1.
Obviously, putting ϕ(x1,x2)=x−p1+x−p2 and p≥1 in (1.3), (1.3) becomes (2.6). The following result follows immediately from (2.6) with p≥1.
−npn−ilimε→0+Bi(Kˇ+pε⋅L)−Bi(L)ε=1n∫Sn−1d(K,u)n−i+pd(L,u)−pdS(u). |
Definition 2.2 (The Lp-mixed chord integrals) Let K,L∈Sn, 0≤i<n and p≥1, the Lp-mixed chord integral of star K and L, denoted by Bp,i(K,L), is defined by
Bp,i(K,L)=1n∫Sn−1d(K,u)n−i+pd(L,u)−pdS(u). | (2.7) |
Obviously, when K=L, the Lp-mixed chord integral Bp,i(K,K) becomes the i-th chord integral Bi(K). This integral representation (2.7), together with the Hölder inequality, immediately gives:
Proposition 2.3 If K,L∈Sn, 0≤i<n and p≥1, then
Bp,i(K,L)n−i≥Bi(K)n−i+pBi(L)−p, | (2.8) |
with equality if and only if K and L are similar chord.
Proposition 2.4 If K,L∈Sn, 0≤i<n and p≥1, then
Bi(Kˇ+pL)−p/(n−i)≥Bi(K)−p/(n−i)+Bi(L)−p/(n−i), | (2.9) |
with equality if and only if K and L are similar chord.
Proof From (2.6) and (2.7), it is easily seen that the Lp-chord integrals is linear with respect to the Lp-chord addition, and together with inequality (2.8), we have for p≥1
Bp,i(Q,Kˇ+pL)=Bp,i(Q,K)+Bp,i(Q,L)≥Bi(Q)(n−i+p)/(n−i)(Bi(K)−p/(n−i)+Bi(L)−p/(n−i)), |
with equality if and only if K and L are similar chord.
Take Kˇ+pL for Q, recall that Bp,i(Q,Q)=Bi(Q), inequality (2.9) follows easily.
Throughout this paper, the standard orthonormal basis for Rn will be {e1,…,en}. Let Φn, n∈N, denote the set of convex functions ϕ:[0,∞)n→(0,∞) that are strictly decreasing in each variable and satisfy ϕ(0)=∞ and ϕ(ej)=1, j=1,…,n. When n=1, we shall write Φ instead of Φ1. The left derivative and right derivative of a real-valued function f are denoted by (f)′l and (f)′r, respectively. We first define the Orlicz chord addition.
Definition 3.1 (The Orlicz chord addition) Let m≥2,ϕ∈Φm, Kj∈Sn and j=1,…,m, the Orlicz chord addition of K1,…,Km, is denoted by ˇ+ϕ(K1,…,Km), is defined by
d(ˇ+ϕ(K1,…,Km),u)=sup{λ>0:ϕ(d(K1,u)λ,…,d(Km,u)λ)≤1}, | (3.1) |
for u∈Sn−1. Equivalently, the Orlicz chord addition ˇ+ϕ(K1,…,Km) can be defined implicitly by
ϕ(d(K1,u)d(ˇ+ϕ(K1,…,Km),u),…,d(Km,u)d(ˇ+ϕ(K1,…,Km),u))=1, | (3.2) |
for all u∈Sn−1.
An important special case is obtained when
ϕ(x1,…,xm)=m∑j=1ϕj(xj), |
for some fixed ϕj∈Φ such that ϕ1(1)=⋯=ϕm(1)=1. We then write ˇ+ϕ(K1,…,Km)=K1ˇ+ϕ⋯ˇ+ϕKm. This means that K1ˇ+ϕ⋯ˇ+ϕKm is defined either by
d(K1ˇ+ϕ⋯ˇ+ϕKm,u)=sup{λ>0:m∑j=1ϕj(d(Kj,u)λ)≤1}, | (3.3) |
for all u∈Sn−1, or by the corresponding special case of (3.2).
Lemma 3.2 The Orlicz chord addition ˇ+ϕ:(Sn)m→Sn is monotonic.
Proof This follows immediately from (3.1).
Lemma 3.3 The Orlicz chord addition ˇ+ϕ:(Sn)m→Sn is GL(n) covariant.
Proof From (2.1), (3.1) and let A∈GL(n), we obtain
d(ˇ+ϕ(AK1,AK2…,AKm),u) |
=sup{λ>0:ϕ(d(AK1,u)λ,d(AK2,u)λ,…,d(AKm,u)λ)≤1}=sup{λ>0:ϕ(d(K1,A−1u)λ,d(K2,A−1u)λ,…,d(Km,A−1u)λ)≤1}=d(ˇ+ϕ(K1,…,Km),A−1u)=d(ˇ+ϕ(K1,…,Km),u). |
This shows Orlicz chord addition ˇ+ϕ is GL(n) covariant.
Lemma 3.4 Suppose K1,…,Km∈Sn. If ϕ∈Φ, then
ϕ(d(K1,u)t)+⋯+ϕ(d(Km,u)t)=1 |
if and only if
d(ˇ+ϕ(K1,…,Km),u)=t |
Proof This follows immediately from Definition 3.1.
Lemma 3.5 Suppose Km,…,Km∈Sn. If ϕ∈Φ, then
rϕ−1(1m)≤d(ˇ+ϕ(K1,…,Km),u)≤Rϕ−1(1m). |
Proof Suppose d(ˇ+ϕ(K1,…,Km),u)=t, from Lemma 3.4 and noting that ϕ is strictly deceasing on (0,∞), we have
1=ϕ(d(K1,u)t)+⋯+ϕ(d(Km,u)t)≤ϕ(rK1t)+⋯+ϕ(rKmt)=mϕ(rt). |
Noting that the inverse ϕ−1 is strictly deceasing on (0,∞), we obtain the lower bound for d(ˇ+ϕ(K1,…,Km),u):
t≥rϕ−1(1m). |
To obtain the upper estimate, observe the fact from the Lemma 3.4, together with the convexity and the fact ϕ is strictly deceasing on (0,∞), we have
1=ϕ(d(K1,u)t)+⋯+ϕ(d(Km,u)t)≥mϕ(d(K1,u)+⋯+d(Km,u)mt)≥mϕ(Rt). |
Then we obtain the upper estimate:
t≤Rϕ−1(1m). |
Lemma 3.6 The Orlicz chord addition ˇ+ϕ:(Sn)m→Sn is continuous.
Proof To see this, indeed, let Kij∈Sn, i∈N∪{0}, j=1,…,m, be such that Kij→K0j as i→∞. Let
d(ˇ+ϕ(Ki1,…,Kim),u)=ti. |
Then Lemma 3.5 shows
rijϕ−1(1m)≤ti≤Rijϕ−1(1m), |
where rij=min{rKij} and Rij=max{RKij}. Since Kij→K0j, we have RKij→RK0j<∞ and rKij→rK0j>0, and thus there exist a,b such that 0<a≤ti≤b<∞ for all i. To show that the bounded sequence {ti} converges to d(ˇ+ϕ(K01,…,K0m),u), we show that every convergent subsequence of {ti} converges to d(ˇ+ϕ(K01,…,K0m),u). Denote any subsequence of {ti} by {ti} as well, and suppose that for this subsequence, we have
ti→t∗. |
Obviously a≤t∗≤b. Noting that ϕ is a continuous function, we obtain
t∗→sup{t∗>0:ϕ(d(K01,u)t∗,…,d(K0m,u)t∗)≤1} |
=d(ˇ+ϕ(K01,…,K0m),u). |
Hence
d(ˇ+ϕ(Ki1,…,Kim),u)→d(ˇ+ϕ(K01,…,K0m),u) |
as i→∞.
This shows that the Orlicz chord addition ˇ+ϕ:(Sn)m→Sn is continuous.
Next, we define the Orlicz chord linear combination for the case m=2.
Definition 3.7 (The Orlicz chord linear combination) The Orlicz chord linear combination, denoted by ˇ+ϕ(K,L,α,β) for K,L∈Sn, and α,β≥0 (not both zero), is defined by
α⋅ϕ1(d(K,u)d(ˇ+ϕ(K,L,α,β),u))+β⋅ϕ2(d(L,u)d(ˇ+ϕ(K,L,α,β),u))=1, | (3.4) |
for ϕ1,ϕ2∈Φ and all u∈Sn−1.
We shall write Kˇ+ϕε⋅L instead of ˇ+ϕ(K,L,1,ε), for ε≥0 and assume throughout that this is defined by (3.1), if α=1,β=ε and ϕ∈Φ. We shall write Kˇ+ϕL instead of ˇ+ϕ(K,L,1,1) and call it the Orlicz chord addition of K and L.
In order to define Orlicz mixed chord integrals, we need the following Lemmas 4.1-4.4.
Lemma 4.1 Let ϕ∈Φ and ε>0. If K,L∈Sn, then Kˇ+ϕε⋅L∈Sn.
Proof Let u0∈Sn−1, and {ui}⊂Sn−1 be any subsequence such that ui→u0 as i→∞.
Let
d(Kˇ+ϕL,ui)=λi. |
Then Lemma 3.5 shows
rϕ−1(12)≤λi≤Rϕ−1(12), |
where R=max{RK,RL} and r=min{rK,rL}.
Since K,L∈Sn, we have 0<rK≤RK<∞ and 0<rL≤RL<∞, and thus there exist a,b such that 0<a≤λi≤b<∞ for all i. To show that the bounded sequence {λi} converges to d(Kˇ+ϕε⋅L,u0), we show that every convergent subsequence of {λi} converges to d(Kˇ+ϕε⋅L,u0). Denote any subsequence of {λi} by {λi} as well, and suppose that for this subsequence, we have
λi→λ0. |
Obviously a≤λ0≤b. From (3.4) and note that ϕ1,ϕ2 are continuous functions, so ϕ−11 is continuous, we obtain
λi→d(K,u0)ϕ−11(1−εϕ2(d(L,u0)λ0)) |
as i→∞. Hence
ϕ1(d(K,u0)λ0)+εϕ2(d(L,u0)λ0)=1. |
Therefore
λ0=d(Kˇ+ϕε⋅L,u0). |
That is
d(Kˇ+ϕε⋅L,ui)→d(Kˇ+ϕε⋅L,u0). |
as i→∞.
This shows that Kˇ+ϕε⋅L∈Sn.
Lemma 4.2 If K,L∈Sn, ε>0 and ϕ∈Φ, then
Kˇ+ϕε⋅L→K | (4.1) |
as ε→0+.
Proof This follows immediately from (3.4).
Lemma 4.3 If K,L∈Sn, 0≤i<n and ϕ1,ϕ2∈Φ, then
ddε|ε=0+d(Kˇ+ϕε⋅L,u)n−i=n−i(ϕ1)′r(1)⋅ϕ2(d(L,u)d(K,u))⋅d(K,u)n−i. | (4.2) |
Proof From (3.4), Lemma 4.2 and notice that ϕ−11, ϕ2 are continuous functions, we obtain for 0≤i<n
ddε|ε=0+d(Kˇ+ϕε⋅L,u)n−i |
=limε→0+(n−i)d(K,u)n−i−1(d(K,u)ϕ2(d(L,u)d(Kˇ+ϕε⋅L,u)))×limy→1−ϕ−11(y)−ϕ−11(1)y−1=n−i(ϕ1)′r(1)⋅ϕ2(d(L,u)d(K,u))⋅d(K,u)n−i, |
where
y=1−εϕ2(d(L,u)d(Kˇ+ϕε⋅L,u)), |
and note that y→1− as ε→0+.
Lemma 4.4 If ϕ∈Φ2, 0≤i<n and K,L∈Sn, then
(ϕ1)′r(1)n−i⋅ddε|ε=0+Bi(Kˇ+ϕε⋅L)=1n∫Sn−1ϕ2(d(L,u)d(K,u))⋅d(K,u)n−idS(u). | (4.3) |
Proof This follows immediately from (2.1) and Lemma 4.3.
Denoting by Bϕ,i(K,L), for any ϕ∈Φ and 0≤i<n, the integral on the right-hand side of (4.3) with ϕ2 replaced by ϕ, we see that either side of the equation (4.3) is equal to Bϕ2,i(K,L) and hence this new Orlicz mixed chord integrals Bϕ,i(K,L) has been born.
Definition 4.5 (The Orlicz mixed chord integral) For ϕ∈Φ and 0≤i<n, Orlicz mixed chord integral of star bodies K and L, Bϕ,i(K,L), is defined by
Bϕ,i(K,L)=:1n∫Sn−1ϕ(d(L,u)d(K,u))⋅d(K,u)n−idS(u). | (4.4) |
Lemma 4.6 If ϕ1,ϕ2∈Φ, 0≤i<n and K,L∈Sn, then
Bϕ2,i(K,L)=(ϕ1)′r(1)n−ilimε→0+Bi(Kˇ+ϕε⋅L)−Bi(K)ε. | (4.5) |
Proof This follows immediately from Lemma 4.4 and (4.4).
Lemma 4.7 If K,L∈Sn, ϕ∈Φ and any A∈SL(n), then for ε>0
A(Kˇ+ϕε⋅L)=(AK)ˇ+ϕε⋅(AL). | (4.6) |
Proof This follows immediately from (2.1) and (3.3).
We find easily that Bϕ,i(K,L) is invariant under simultaneous unimodular centro-affine transformation.
Lemma 4.8 If ϕ∈Φ, 0≤i<n and K,L∈Sn, then for A∈SL(n),
Bϕ,i(AK,AL)=Bϕ,i(K,L). | (4.7) |
Proof This follows immediately from Lemmas 4.6 and 4.7.
In this section, we will define a Borel measure in Sn−1, denoted by Bn,i(K,υ), which we shall call the chord measure of star body K.
Definition 5.1 (The chord measure) Let K∈Sn and 0≤i<n, the chord measure of star body K, denoted by Bn,i(K,υ), is defined by
dBn,i(K,υ)=1n⋅d(K,υ)n−iBi(K)dS(υ). | (5.1) |
Lemma 5.2 (Jensen's inequality) Let μ be a probability measure on a space X and g:X→I⊂R be a μ-integrable function, where I is a possibly infinite interval. If ψ:I→R is a convex function, then
∫Xψ(g(x))dμ(x)≥ψ(∫Xg(x)dμ(x)). | (5.2) |
If ψ is strictly convex, the equality holds if and only if g(x) is constant for μ-almost all x∈X (see [34, p. 165]).
Lemma 5.3 Suppose that ϕ:[0,∞)→(0,∞) is decreasing and convex with ϕ(0)=∞. If K,L∈Sn and 0≤i<n, then
1nBi(K)∫Sn−1ϕ(d(L,u)d(K,u))d(K,u)n−idS(u)≥ϕ((Bi(L)Bi(K))1/(n−i)). | (5.3) |
If ϕ is strictly convex, the equality holds if and only if K and L are similar chord.
Proof For K∈Sn−1, 0≤i<n and any u∈Sn−1, the chord measure d(K,u)n−inBi(K)dS(u) is a probability measure on Sn−1. Hence, from (2.4), (2.5), (5.1) and by using Jensen's inequality, and in view of ϕ is decreasing, we obtain
1nBi(K)∫Sn−1ϕ(d(L,u)d(K,u))d(K,u)n−idS(u) |
=∫Sn−1ϕ(d(L,u)d(K,u))dBn,i(K,u)≥ϕ(Bi(K,L)Bi(K))≥ϕ((Bi(L)Bi(K))1/(n−i)). |
Next, we discuss the equality in (5.3). If ϕ is strictly convex, suppose the equality holds in (5.3), form the equality necessary conditions of Jensen's inequality and (2.5), it follows that d(L,u)/d(K,u) is constant, and K and L are similar chord, respectively. This yields that there exists r>0 such that d(L,u)=rd(K,u), for all u∈Sn−1. On the other hand, suppose that K and L are similar chord, i.e. there exists λ>0 such that d(L,u)=λd(K,u) for all u∈Sn−1. Hence
1nBi(K)∫Sn−1ϕ(d(L,u)d(K,u))d(K,u)n−idS(u) |
=1nBi(K)∫Sn−1ϕ((Bi(L)Bi(K))1/(n−i))d(K,u)n−idS(u)=ϕ((Bi(L)Bi(K))1/(n−i)). |
This implies the equality in (5.3) holds.
Theorem 5.4 (Orlicz chord Minkowski inequality) If K,L∈Sn, 0≤i<n and ϕ∈Φ, then
Bϕ,i(K,L)≥Bi(K)⋅ϕ((Bi(L)Bi(K))1/(n−i)). | (5.4) |
If ϕ is strictly convex, the equality holds if and only if K and L are similar chord.
Proof This follows immediately from (4.4) and Lemma 5.3.
Corollary 5.5 If K,L∈Sn, 0≤i<n and p≥1, then
Bp,i(K,L)n−i≥Bi(K)n−i+pBi(L)−p, | (5.5) |
with equality if and only if K and L are similar chord.
Proof This follows immediately from Theorem 5.4 with ϕ1(t)=ϕ2(t)=t−p and p≥1.
Taking i=0 in (5.5), this yields Lp-Minkowski inequality: If K,L∈Sn and p≥1, then
Bp(K,L)n≥B(K)n+pB(L)−p, |
with equality if and only if K and L are similar chord.
Corollary 5.6 Let K,L∈M⊂Sn, 0≤i<n and ϕ∈Φ, and if either
Bϕ,i(Q,K)=Bϕ,i(Q,L),forallQ∈M | (5.6) |
or
Bϕ,i(K,Q)Bi(K)=Bϕ,i(L,Q)Bi(L),forallQ∈M, | (5.7) |
then K=L.
Proof Suppose (5.6) holds. Taking K for Q, then from (2.3), (4.4) and (5.3), we obtain
Bi(K)=Bϕ,i(K,L)≥Bi(K)ϕ((Bi(L)Bi(K))1/(n−i)) |
with equality if and only if K and L are similar chord. Hence
Bi(K)≤Bi(L), |
with equality if and only if K and L are similar chord. On the other hand, if taking L for Q, by similar arguments, we get Bi(K)≥Bi(L), with equality if and only if K and L are similar chord. Hence Bi(K)=Bi(L), and K and L are similar chord, it follows that K and L must be equal.
Suppose (5.7) holds. Taking L for Q, then from from (2.3), (4.4) and (5.3), we obtain
1=Bϕ,i(K,L)Bi(K)≥ϕ((Bi(L)Bi(K))1/(n−i)), |
with equality if and only if K and L are similar chord. Hence
Bi(K)≤Bi(L), |
with equality if and only if K and L are similar chord. On the other hand, if taking K for Q, by similar arguments, we get Bi(K)≥Bi(L), with equality if and only if K and L are similar chord. Hence Bi(K)=Bi(L), and K and L have similar chord, it follows that K and L must be equal.
When ϕ1(t)=ϕ2(t)=t−p and p≥1, Corollary 5.6 becomes the following result.
Corollary 5.7 Let K,L∈M⊂Sn, 0≤i<n and p≥1, and if either
Bp,i(K,Q)=Bp,i(L,Q),forallQ∈M |
or
Bp,i(K,Q)Bi(K)=Bp,i(L,Q)Bi(L),forallQ∈M, |
then K=L.
Lemma 6.1 If K,L∈Sn, 0≤i<n, and ϕ1,ϕ2∈Φ, then
Bi(Kˇ+ϕL)=Bϕ1,i(Kˇ+ϕL,K)+Bϕ2,i(Kˇ+ϕL,L). | (6.1) |
Proof From (3.1), (3.4) and (4.4), we have for Kˇ+ϕL=Q∈Sn
Bϕ1,i(Q,K)+Bϕ2,i(Q,L) |
=1n∫Sn−1ϕ(d(K,u)d(Q,u),d(L,u)d(Q,u))d(Q,u)n−idS(u) |
=Bi(Q). | (6.2) |
The completes the proof.
Lemma 6.2 Let K,L∈Sn, ε>0 and ϕ∈Φ.
(1) If K and L are similar chord, then K and Kˇ+ϕε⋅L are similar chord.
(2) If K and Kˇ+ϕε⋅L are similar chord, then K and L are similar chord.
Proof Suppose exist a constant λ>0 such that d(L,u)=λd(K,u), we have
ϕ(d(K,u)d(Kˇ+ϕε⋅L,u))+εϕ(λd(K,u)d(Kˇ+ϕε⋅L,u))=1. |
On the other hand, the exist unique constant δ>0 such that
ϕ(d(K,u)d(δK,u))+εϕ(λd(K,u)d(δK,u))=1, |
where δ satisfies that
ϕ(1δ)+εϕ(λδ)=1. |
This shows that d(Kˇ+ϕε⋅L,u)=δd(K,u).
Suppose exist a constant λ>0 such that d(Kˇ+ϕε⋅L,u)=λd(K,u). Then
ϕ(1λ)+εϕ(d(L,u)d(Kˇ+ϕε⋅L,u))=1. |
This shows that
d(L,u)d(Kˇ+ϕε⋅L,u) |
is a constant. This yields that Kˇ+ϕε⋅L and L are similar chord. Namely K and L are similar chord.
Theorem 6.3 (Orlicz chord Brunn-Minkowski inequality) If K,L∈Sn, 0≤i<n and ϕ∈Φ2, then
1≥ϕ((Bi(K)Bi(Kˇ+ϕL))1/(n−i),(Bi(L)Bi(Kˇ+ϕL))1/(n−i)). | (6.3) |
If ϕ is strictly convex, the equality holds if and only if K and L are similar chord.
Proof From (5.4) and Lemma 6.1, we have
Bi(Kˇ+ϕL)=Bϕ1,i(Kˇ+ϕL,K)+Bϕ2,i(Kˇ+ϕL,L)≥Bi(Kˇ+ϕL)(ϕ1((Bi(K)Bi(Kˇ+ϕL))1/(n−i))+ϕ2((Bi(L)kBi(Kˇ+ϕL))1/(n−i)))=Bi(Kˇ+ϕL)ϕ((Bi(K)Bi(Kˇ+ϕL))1/(n−i),(Bi(L)Bi(Kˇ+ϕL))1/(n−i)). |
This is just inequality (6.3). From the equality condition of (5.4) and Lemma 6.3, it yields that if ϕ is strictly convex, equality in (6.3) holds if and only if K and L are similar chord.
Corollary 6.4 If K,L∈Sn, 0≤i<n and p≥1, then
Bi(Kˇ+pL)−p/(n−i)≥Bi(K)−p/(n−i)+Bi(L)−p/(n−i), | (6.4) |
with equality if and only if K and L are similar chord.
Proof This follows immediately from Theorem 6.2 with ϕ(x1,x2)=x−p1+x−p2 and p≥1.
Taking i=0 in (6.4), this yields the Lp-Brunn-Minkowski inequality for the chord integrals. If K,L∈Sn and p≥1, then
B(Kˇ+pL)−p/n≥B(K)−p/n+B(L)−p/n, |
with equality if and only if K and L are similar chord.
As a application, in the section, we give a new isoperimetric inequality for chord integrals. As we all know, the isoperimetric inequality for convex bodies can be stated below (see e.g. [26], p. 318).
The isoperimetric inequality If K is convex body in Rn, then
(V(K)V(B))n−1≤(S(K)S(B))n, | (7.1) |
with equality if and only if K is an n-ball.
Here B is the unit ball centered at the origin, V(K) denotes the volume of K and S(K) is the surface area of K, defined by (see [26], p. 318)
S(K)=limε→0V(K+εB)−V(K)ε=nV1(K,B), |
where + the usual Minkowski sum. Here, the mixed volume of convex bodies K and L, V1(K,L), defined by (see e.g. [1])
V1(K,L)=1n∫Sn−1h(L,u)dS(K,u). | (7.2) |
Next, we give some new isoperimetric inequalities for mixed chord integrals by using the Orlicz chord Minkowski inequality established in Section 5.
Theorem 7.1 (The Lp-isoperimetric inequality for mixed chord integrals) If K∈Sn, 0≤i<n and p≥1, then
(˜Bp,i(K)S(B))n−i≥(Bi(K)V(B))n−i+p, | (7.3) |
with equality if and only if K is an n-ball, where ˜Bp,i(K)=nBp,i(K,B).
Proof Putting L=B, ϕ(t)=t−p and p≥1 in Orlicz chord Minkowski inequality (5.4)
Bp,i(K,B)Bi(K)≥(Bi(B)Bi(K))−p/(n−i). |
That is
(Bp,i(K,B)Bi(K))n−i≥(Bi(K)V(B))p. |
Hence
(nBp,i(K,B)S(B))n−i≥(Bi(K)V(B))n−i+p. |
From the equality of (5.4), we find that the equality in (7.3) holds if and only if K and B are similar chord. This yields that the equality in (7.3) holds if and only if K is an n-ball.
Theorem 7.2 (The isoperimetric inequality for the chord integrals) If K∈Sn, then
(˜B(K)S(B))n≥(B(K)V(B))n+1, | (7.4) |
with equality if and only if K is an n-ball, where ˜B(K)=nB1(K,B).
Proof This follows immediately from (7.3) with p=1 and i=0.
This is just a similar form of the classical isoperimetric inequality (7.1).
As extensions, in the Section, the Orlicz mixed chord integral of K and L, Bϕ(K,L), is generalized into Orlicz multiple mixed chord integral of (n+1) star bodies L1,K1,…,Kn. Further, we generalize the Orlicz-Minklowski inequality into Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals.
Theorem 8.1 If L1,K1,…,Kn∈Sn and ϕ1,ϕ2∈Φ, then
ddε|ε=0+B(L1ˇ+ϕε⋅K1,K2,⋯,Kn)=1n(ϕ1)′r(1) |
×∫Sn−1ϕ2(d(K1,u)d(L1,u))d(L1,u)d(K2,u)⋯d(Kn,u)dS(u). | (8.1) |
Proof This may yield by using a generalized idea and method of proving Lemma 4.4. Here, we omit the details.
Obviously, (4.3) is a special case of (8.1). Moreover, from Theorem 8.1, we can find the following definition:
Definition 8.2 (Orlicz multiple mixed chord integrals) Let L1,K1,…,Kn∈Sn and ϕ∈Φ, the Orlicz multiple mixed chord integral of (n+1) star bodies L1,K1,…,Kn, is denoted by Bϕ(L1,K1,…,Kn), is defined by
Bϕ(L1,K1,…,Kn)=1n∫Sn−1ϕ(d(K1,u)d(L1,u))d(L1,u)d(K2,u)⋯d(Kn,u)dS(u). | (8.2) |
When L1=K1, Bϕ(L1,K1,…,Kn) becomes the well-known mixed chord integral B(K1,…,Kn). Obviously, for 0≤i<n, Bϕ,i(K,L) is also a special case of Bϕ(L1,K1,…,Kn).
Corollary 8.3 If L1,K1,…,Kn∈Sn and ϕ1,ϕ2∈Φ, then
Bϕ2(L1,K1,…,Kn)=(ϕ1)′r(1)⋅ddε|ε=0B(L1+ϕε⋅K1,K2,…,Kn). | (8.3) |
Proof This yields immediately from (8.1) and (8.2).
Similar to the proof of Theorem 5.4, we may establish an Orlicz-Aleksandrov-Fenchel inequality as follows:
Theorem 8.4 (Orlicz-Aleksandrov-Fenchel inequality for the Orlicz multiple mixed chord integrals) If L1,K1,…,Kn∈Sn, ϕ∈Φ and 1≤r≤n, then
Bϕ(L1,K1,K2,⋯,Kn)≥B(L1,K2,⋯,Kn)⋅ϕ(r∏i=1B(Ki…,Ki,Kr+1,…,Kn)1rB(L1,K2…,Kn)). | (8.4) |
If ϕ is strictly convex, equality holds if and only if L1,K1,…,Kr are all of similar chord.
Proof This yields immediately by using a generalized idea and method of proving Theorem 5.4. Here, we omit the details.
Obviously, the Orlicz-Minklowski inequality (5.4) is a special case of the Orlicz-Aleksandrov-Fenchel inequality (8.4). Moreover, when L1=K1, (8.4) becomes the following Aleksandrov-Fenchel inequality for the mixed chords.
Corollary 8.5 (Aleksandrov-Fenchel inequality for the mixed chord integrals) If K1,…,Kn∈Sn and 1≤r≤n, then
B(K1,⋯,Kn)≤r∏i=1B(Ki…,Ki,Kr+1,…,Kn)1r. | (8.5) |
with equality if and only if K1,…,Kr are all of similar chord.
Finally, it is worth mentioning: when ϕ(t)=t−p and p≥1, Bϕ(L1,K1,…,Kn) written as Bp(L1,K1,…,Kn) and call it Lp-multiple mixed chord integrals of (n+1) star bodies L1,K1,…,Kn. So, the new concept of Lp-multiple mixed chord integrals and Lp-Aleksandrov-Fenchel inequality for the Lp-multiple mixed chord integrals may be also derived. Here, we omit the details of all derivations.
Research is supported by National Natural Science Foundation of China (11371334, 10971205).
The author declares that no conflicts of interest in this paper.
[1] | G. Kirchhoff, Vorlesungen über mathematische Physik, Monatsh. Math. Phys., 8 (1897), A29. |
[2] |
S. Albeverio and A. B. Cruzeiro, Global flows with invariant (Gibbs) measures for Euler and Navier-Stokes two-dimensional fluids, Commun. Math. Phys., 129 (1990), 431-444. doi: 10.1007/BF02097100
![]() |
[3] |
H. Aref, J. B. Kadtke, I. Zawadzki, et al. Point vortex dynamics: recent results and open problems, Fluid Dyn. Res., 3 (1988), 63-74. doi: 10.1016/0169-5983(88)90044-5
![]() |
[4] | H. Aref and I. Zawadzki, Vortex interactions as a dynamical system, In: New approaches and concepts in turbulence (Monte Verità, 1991), Monte Verità, pp. 191-205. Birkhäuser, Basel, 1993. |
[5] | G. Badin and A. M. Barry, Collapse of generalized Euler and surface quasi-geostrophic point-vortices, Phys. Rev. E, 98 (2018). |
[6] | D. Bartolucci, Global bifurcation analysis of mean field equations and the Onsager microcanonical description of two-dimensional turbulence, Calc. Var. PDE, 58 (2019), 18. |
[7] |
D. Bartolucci, A. Jevnikar, Y. Lee and W. Yang Non-degeneracy, mean field equations and the Onsager theory of 2D turbulence, Arch. Ration. Mech. An., 230 (2018), 397-426. doi: 10.1007/s00205-018-1248-y
![]() |
[8] |
G. B. Arous and A. Guionnet, Large deviations for Wigner's law and Voiculescu's non-commutative entropy, Probab. Theory Rel. Fields, 108 (1997), 517-542. doi: 10.1007/s004400050119
![]() |
[9] |
G. Benfatto, P. Picco and M. Pulvirenti, On the invariant measures for the two-dimensional Euler flow, J. Stat. Phys., 46 (1987), 729-742. doi: 10.1007/BF01013382
![]() |
[10] |
T. Bodineau and A. Guionnet, About the stationary states of vortex systems, Ann. I. H. Poincare-PR, 35 (1999), 205-237. doi: 10.1016/S0246-0203(99)80011-9
![]() |
[11] | F. Bouchet, C. Nardini and T. Tangarife, Non-equilibrium statistical mechanics of the stochastic Navier-Stokes equations and geostrophic turbulence, Warsaw University Press. 5th Warsaw School of Statistical Physics, 2014. |
[12] | F. Bouchet and J. Sommeria, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, J. Fluid Mech., 464 (2002), 165-207. |
[13] |
E. Caglioti, P.-L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., 143 (1992), 501-525. doi: 10.1007/BF02099262
![]() |
[14] |
E. Caglioti, P.-L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II, Commun. Math. Phys., 174 (1995), 229-260. doi: 10.1007/BF02099602
![]() |
[15] | G. Cavallaro, R. Garra and C. Marchioro, \newblock Localization and stability of active scalar flows, \newblock Riv. Math. Univ. Parma, 4 (2013), 175-196. |
[16] |
D. Chae, Weak solutions of 2-D incompressible Euler equations, Nonlinear Analysis, 23 (1994), 629-638. doi: 10.1016/0362-546X(94)90242-9
![]() |
[17] |
D. Chae, P. Constantin, D. Cόrdoba, F. Gancedo, J. Wu, Generalized surface quasi-geostrophic equations with singular velocities, Commun. Pure Appl. Math., 65 (2012), 1037-1066. doi: 10.1002/cpa.21390
![]() |
[18] |
D. Chae, P. Constantin and J. Wu, Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., 202 (2011), 35-62. doi: 10.1007/s00205-011-0411-5
![]() |
[19] |
P.-H. Chavanis, From Jupiter's great red spot to the structure of galaxies: Statistical mechanics of two-dimensional vortices and stellar systems, Annals of the New York Academy of Sciences, 867 (1998), 120-140. doi: 10.1111/j.1749-6632.1998.tb11254.x
![]() |
[20] | P.-H. Chavanis, Statistical mechanics of two-dimensional vortices and stellar systems, In: Dynamics and thermodynamics of systems with long-range interactions, Vol. 602 of Lecture Notes in Phys., pp. 208-289. Springer, Berlin, 2002. |
[21] |
A. J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech., 57 (1973), 785-796. doi: 10.1017/S0022112073002016
![]() |
[22] |
A. J. Chorin, The evolution of a turbulent vortex, Commun. Math. Phys., 83 (1982), 517-535. doi: 10.1007/BF01208714
![]() |
[23] |
A. J. Chorin, Equilibrium statistics of a vortex filament with applications, Commun. Math. Phys., 141 (1991), 619-631. doi: 10.1007/BF02102820
![]() |
[24] | A. J. Chorin, Vorticity and turbulence, Vol. 103 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994. |
[25] |
A. J. Chorin and J. H. Akao, Vortex equilibria in turbulence theory and quantum analogues, Physica D: Nonlinear Phenomena, 52 (1991), 403-414. doi: 10.1016/0167-2789(91)90136-W
![]() |
[26] |
X. Carton, Instability of surface quasigeostrophic vortices, J. Atmos. Sci., 66 (2009), 1051-1062. doi: 10.1175/2008JAS2872.1
![]() |
[27] |
P. Constantin, G. Iyer and J. Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana U. Math. J., 57 (2008), 2681-2692. doi: 10.1512/iumj.2008.57.3629
![]() |
[28] |
P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533. doi: 10.1088/0951-7715/7/6/001
![]() |
[29] | G. Conti and G. Badin, Velocity statistics for point vortices in the local ɑ-models of turbulence, to appear on Geophysical & Astrophysical Fluid Dynamics, 2019 |
[30] |
D. Cordoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. Math., 148 (1998), 1135-1152. doi: 10.2307/121037
![]() |
[31] |
D. Cordoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations, J. Am. Math. Soc., 15 (2002), 665-670. doi: 10.1090/S0894-0347-02-00394-6
![]() |
[32] |
D. Cόrdoba, C. Fefferman and J. L. Rodrigo, Almost sharp fronts for the surface quasi-geostrophic equation, P. Natl. Acad. Sci. USA, 101 (2004), 2687-2691. doi: 10.1073/pnas.0308154101
![]() |
[33] |
D. Cόrdoba, M. A. Fontelos, A. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations, P. Natl. Acad. Sci. USA, 102 (2005), 5949-5952. doi: 10.1073/pnas.0501977102
![]() |
[34] | D. Cόrdoba, J. Gόmez-Serrano and A. D. Ionescu, Global solutions for the generalized SQG patch equation, to appear on Arch. Rational. Mech. Anal., 2019. |
[35] |
C. De Lellis and L. Székelyhidi, Jr, The Euler equations as a differential inclusion, Ann. Math., 170 (2009), 1417-1436. doi: 10.4007/annals.2009.170.1417
![]() |
[36] |
J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., 4 (1991), 553-586. doi: 10.1090/S0894-0347-1991-1102579-6
![]() |
[37] | J.-M. Delort, Existence des nappes de tourbillon de signe fixe en dimension deux. In: Nonlinear partial differential equations and their applications, Pitman Research Notes in Mathematics Series, 1994. |
[38] |
R. J. DiPerna and A. J. Majda, Concentrations in regularizations for 2-D incompressible flow, Commun. Pure Appl. Math., 40 (1987), 301-345. doi: 10.1002/cpa.3160400304
![]() |
[39] |
D. G. Dritschel, An exact steadily rotating surface quasi-geostrophic elliptical vortex, Geophys. Astro. Fluid, 105 (2011), 368-376. doi: 10.1080/03091929.2010.485997
![]() |
[40] | G. L. Eyink and H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence, J. Stat. Phys., 70 (1993), 833-886. |
[41] |
G. L. Eyink and K. R. Sreenivasan, Onsager and the theory of hydrodynamic turbulence, Rev. Mod. Phys., 78 (2006), 87-135. doi: 10.1103/RevModPhys.78.87
![]() |
[42] |
F. Flandoli, On a probabilistic description of small scale structures in 3D fluids, Ann. I. H. Poincare-Pr, 38 (2002), 207-228. doi: 10.1016/S0246-0203(01)01092-5
![]() |
[43] |
F. Flandoli, Weak vorticity formulation of 2D Euler equations with white noise initial condition, Commun. PDE, 43 (2018), 1102-1149. doi: 10.1080/03605302.2018.1467448
![]() |
[44] |
F. Flandoli and M. Gubinelli, The Gibbs ensemble of a vortex filament, Probab. Theory Rel. Fields, 122 (2002), 317-340. doi: 10.1007/s004400100163
![]() |
[45] | F. Flandoli and M. Saal, mSQG equations in distributional spaces and point vortex approximation, to appear on J. Evol. Equat., 2019. |
[46] | U. Frisch, Turbulence, Cambridge University Press, Cambridge, 1995. |
[47] |
J. Fröhlich and D. Ruelle, Statistical mechanics of vortices in an inviscid two-dimensional fluid, Commun. Math. Phys., 87 (1982), 1-36. doi: 10.1007/BF01211054
![]() |
[48] | J. Fröhlich and E. Seiler, The massive Thirring-Schwinger model qed2: convergence of perturbation theory and particle structure, Helv. Phys. Acta, 49 (1976), 889-924. |
[49] | R. Garra, Confinement of a hot temperature patch in the modified SQG model, Discrete Contin. Dynam. Syst. B, 2018. |
[50] | C. Geldhauser and M. Romito, Limit theorems and fluctuations for point vortices of generalized Euler equations, arXiv:1810.12706, 2018. |
[51] | C. Geldhauser and M. Romito, Point vortices for inviscid generalized surface quasi-geostrophic models, arXiv:1812.05166, 2018. |
[52] |
J. Goodman, T. Y. Hou and J. Lowengrub, Convergence of the point vortex method for the 2-D Euler equations, Comm. Pure Appl. Math., 43 (1990), 415-430. doi: 10.1002/cpa.3160430305
![]() |
[53] | F. Grotto and M. Romito, A Central Limit Theorem for Gibbsian Invariant Measures of 2D Euler Equation, arXiv:1904.01871, 2019. |
[54] |
M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009), 1357-1384. doi: 10.1142/S0218202509003814
![]() |
[55] |
I. M. Held, R. T. Pierrehumbert, S. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics, Journal of Fluid Mechanics, 282 (1995), 1-20. doi: 10.1017/S0022112095000012
![]() |
[56] | I. M. Held, R. T. Pierrehumbert and K. L. Swanson, Spectra of local and nonlocal two-dimensional turbulence, Chaos, Solitons & Fractals, 4 (1994), 1111-1116. |
[57] | H. Helmholtz, über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 55 (1858), 25-55. |
[58] | V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032-1066. |
[59] |
M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Commun. Pur. Appl. Math., 46 (1993), 27-56. doi: 10.1002/cpa.3160460103
![]() |
[60] |
M. K.-H. Kiessling and Y. Wang, Onsager's ensemble for point vortices with random circulations on the sphere, J. Stat. Phys., 148 (2012), 896-932. doi: 10.1007/s10955-012-0552-4
![]() |
[61] | A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur, Journal of Mathematical Sciences, 166 (2009), 31-39. |
[62] |
A. Kiselev, L. Ryzhik, Y. Yao and A. Zlatos, Finite time singularity for the modified SQG patch equation, Ann. Math., 184 (2016), 909-948. doi: 10.4007/annals.2016.184.3.7
![]() |
[63] |
R. Klein, A. J. Majda and K. Damodaran, Simplified equations for the interaction of nearly parallel vortex filaments, J. Fluid Mech., 288 (1995), 201-248. doi: 10.1017/S0022112095001121
![]() |
[64] |
R. H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10 (1967), 1417-1423. doi: 10.1063/1.1762301
![]() |
[65] |
T. Leblé, S. Serfaty and O. Zeitouni, Large deviations for the two-dimensional two-component plasma, Commun. Math. Phys., 350 (2017), 301-360. doi: 10.1007/s00220-016-2735-3
![]() |
[66] |
C. C. Lim and A. J. Majda, Point vortex dynamics for coupled surface/interior QG and propagating heton clusters in models for ocean convection, Geophys. Astro. Fluid, 94 (2001), 177-220. doi: 10.1080/03091920108203407
![]() |
[67] |
C. C. Lin, On the motion of vortices in two dimensions: I. Existence of the Kirchhoff-Routh function, P. Natl. Acad. Sci. USA, 27 (1941), 570-575. doi: 10.1073/pnas.27.12.570
![]() |
[68] |
C. C. Lin, On the motion of vortices in two dimensions: II. Some further investigations on the Kirchhoff-Routh function, P. Natl. Acad. Sci. USA, 27 (1941), 575-577. doi: 10.1073/pnas.27.12.575
![]() |
[69] | P.-L. Lions, On Euler equations and statistical physics, Cattedra Galileiana [Galileo Chair], Scuola Normale Superiore, Classe di Scienze, Pisa, 1998. |
[70] |
P.-L. Lions and A. Majda, Equilibrium statistical theory for nearly parallel vortex filaments, Commun. Pur. Appl. Math., 53 (2000), 76-142. doi: 10.1002/(SICI)1097-0312(200001)53:1<76::AID-CPA2>3.0.CO;2-L
![]() |
[71] |
A. J. Majda and E. G. Tabak, A two-dimensional model for quasi-geostrophic flow: comparison with the two-dimensional Euler flow, Physica D: Nonlinear Phenomena, 98 (1996), 515-522. doi: 10.1016/0167-2789(96)00114-5
![]() |
[72] | F. Marchand, Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces Lp or ˙H−1/2, Commun. Math. Phys., 277 (2008), 45-67. |
[73] |
C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Commun. Math. Phys., 84 (1982), 483-503. doi: 10.1007/BF01209630
![]() |
[74] | C. Marchioro and M. Pulvirenti, On the vortex-wave system. In: Mechanics, analysis and geometry: 200 years after Lagrange, North-Holland Delta Ser., pp. 79-95. North-Holland, Amsterdam, 1991. |
[75] |
C. Marchioro and M. Pulvirenti, Vortices and localization in Euler flows, Commun. Math. Phys., 154 (1993), 49-61. doi: 10.1007/BF02096831
![]() |
[76] | C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Springer-Verlag, New York, 1994. |
[77] |
J. C. McWilliams, The emergence of isolated coherent vortices in turbulent flow, J. Fluid Mech., 146 (1984), 21-43. doi: 10.1017/S0022112084001750
![]() |
[78] |
J. Miller, Statistical mechanics of Euler equations in two dimensions, Phys. Rev. Lett., 65 (1990), 2137-2140. doi: 10.1103/PhysRevLett.65.2137
![]() |
[79] |
D. Montgomery and G. Joyce, Statistical mechanics of ``negative temperature'' states, Phys. Fluids, 17 (1974), 1139-1145. doi: 10.1063/1.1694856
![]() |
[80] | D. Montgomery, W. Matthaeus, W. Stribling, D. Martinez, and S. Oughton Relaxation in two dimensions and the sinh-Poisson equation, Phys. Fluids, 4 (1992), 3-6. |
[81] |
A. Nahmod, N. Pavlovic, G. Staffilani, et al. Global flows with invariant measures for the inviscid modified SQG equations, Stochastics and Partial Differential Equations: Analysis and Computations, 6 (2018), 184-210. doi: 10.1007/s40072-017-0106-5
![]() |
[82] |
C. Neri, Statistical mechanics of the N-point vortex system with random intensities on a bounded domain, Ann. I. H. Poincare-An, 21 (2004), 381-399. doi: 10.1016/j.anihpc.2003.05.002
![]() |
[83] | C. Neri, Statistical mechanics of the N-point vortex system with random intensities on \mathbbR2, Elec. J. Diff. Eq., 92 (2005), 1-26. |
[84] | K. Ohkitani, Asymptotics and numerics of a family of two-dimensional generalized surface quasi-geostrophic equations, Phys. Fluids, 24 (2012), 095101. |
[85] |
L. Onsager, Statistical hydrodynamics, Nuovo Cim. (Suppl. 2), 6 (1949), 279-287. doi: 10.1007/BF02780991
![]() |
[86] |
E. A. Overman and N. J. Zabusky, Evolution and merger of isolated vortex structures, Phys. Fluids, 25 (1982), 1297-1305. doi: 10.1063/1.863907
![]() |
[87] |
F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation, Methods and Applications of Analysis, 9 (2002), 533-562. doi: 10.4310/MAA.2002.v9.n4.a4
![]() |
[88] | M. Pulvirenti, On invariant measures for the 2-D Euler flow. In: Mathematical aspects of vortex dynamics, (Leesburg, VA, pp. 88-96, SIAM, 1989. |
[89] | S. G. Resnick, Dynamical problems in non-linear advective partial differential equations, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.), The University of Chicago. |
[90] | T. Ricciardi and R. Takahashi, Blow-up behavior for a degenerate elliptic sinh-Poisson equation with variable intensities, Calc. Var. PDE, 55 (2016), 152. |
[91] | T. Ricciardi and R. Takahashi, On radial two-species onsager vortices near the critical temperature, arXiv:1706.06046, 2017. |
[92] | T. Ricciardi, R. Takahashi, G. Zecca and X. Zhang On the existence and blow-up of solutions for a mean field equation with variable intensities, Rend. Lincei-Mat Appl., 27 (2016), 413-429. |
[93] | R. Robert, états d'équilibre statistique pour l'écoulement bidimensionnel d'un fluide parfait, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 575-578. |
[94] |
R. Robert, A maximum-entropy principle for two-dimensional perfect fluid dynamics, J. Stat. Phys., 65 (1991), 531-553. doi: 10.1007/BF01053743
![]() |
[95] |
R. Robert, On the statistical mechanics of 2D Euler equation, Commun. Math. Phys., 212 (2000), 245-256. doi: 10.1007/s002200000210
![]() |
[96] |
R. Robert and J. Sommeria, Statistical equilibrium states for two-dimensional flows, J. Fluid Mech., 229 (1991), 291-310. doi: 10.1017/S0022112091003038
![]() |
[97] |
J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation, Commun. Pur. Appl. Math., 58 (2005), 821-866. doi: 10.1002/cpa.20059
![]() |
[98] | K. Sawada and T. Suzuki, Rigorous Derivation of the Mean Field Equation for a Point Vortex System, Theoretical and Applied Mechanics Japan, 57 (2009), 233-239. |
[99] |
S. Schochet, The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation, Commun. Part. Diff. Eq., 20 (1995), 1077-1104. doi: 10.1080/03605309508821124
![]() |
[100] |
N. Schorghofer, Energy spectra of steady two-dimensional turbulent flows, Phys. Rev. E, 61 (2000), 6572-6577. doi: 10.1103/PhysRevE.61.6572
![]() |
[101] |
R. K. Scott, A scenario for finite-time singularity in the quasigeostrophic model, J. Fluid Mech., 687 (2011), 492-502. doi: 10.1017/jfm.2011.377
![]() |
[102] | R. K. Scott and D. G. Dritschel, Numerical simulation of a self-similar cascade of filament instabilities in the surface quasigeostrophic system, Phys. Rev. Lett., 112 (2014), 144505. |
[103] | C. Taylor and S. G. Llewellyn Smith, Dynamics and transport properties of three surface quasigeostrophic point vortices, Chaos: An Interdisciplinary Journal of Nonlinear Science, 26 (2016), 113117. |
[104] |
C. V. Tran, Nonlinear transfer and spectral distribution of energy in ɑ turbulence, Phys. D, 191 (2004), 137-155. doi: 10.1016/j.physd.2003.11.005
![]() |
[105] | C. V. Tran, D. G. Dritschel and R. K. Scott, Effective degrees of nonlinearity in a family of generalized models of two-dimensional turbulence, Phys. Rev. E, 81 (2010), 016301. |
[106] | A. Venaille, T. Dauxois and S. Ruffo, Violent relaxation in two-dimensional flows with varying interaction range, Phys. Rev. E, 92 (2015), 011001. |
[107] | W. Wolibner, Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., 37 (1933), 698-726. |
1. | Zhen-Hang Yang, Feng Qi, Bivariate homogeneous functions of two parameters: monotonicity, convexity, comparisons, and functional inequalities, 2024, 0022247X, 129091, 10.1016/j.jmaa.2024.129091 |