Citation: Carina Geldhauser, Marco Romito. The point vortex model for the Euler equation[J]. AIMS Mathematics, 2019, 4(3): 534-575. doi: 10.3934/math.2019.3.534
[1] | G. Kirchhoff, Vorlesungen über mathematische Physik, Monatsh. Math. Phys., 8 (1897), A29. |
[2] | S. Albeverio and A. B. Cruzeiro, Global flows with invariant (Gibbs) measures for Euler and Navier-Stokes two-dimensional fluids, Commun. Math. Phys., 129 (1990), 431-444. doi: 10.1007/BF02097100 |
[3] | H. Aref, J. B. Kadtke, I. Zawadzki, et al. Point vortex dynamics: recent results and open problems, Fluid Dyn. Res., 3 (1988), 63-74. doi: 10.1016/0169-5983(88)90044-5 |
[4] | H. Aref and I. Zawadzki, Vortex interactions as a dynamical system, In: New approaches and concepts in turbulence (Monte Verità, 1991), Monte Verità, pp. 191-205. Birkhäuser, Basel, 1993. |
[5] | G. Badin and A. M. Barry, Collapse of generalized Euler and surface quasi-geostrophic point-vortices, Phys. Rev. E, 98 (2018). |
[6] | D. Bartolucci, Global bifurcation analysis of mean field equations and the Onsager microcanonical description of two-dimensional turbulence, Calc. Var. PDE, 58 (2019), 18. |
[7] | D. Bartolucci, A. Jevnikar, Y. Lee and W. Yang Non-degeneracy, mean field equations and the Onsager theory of 2D turbulence, Arch. Ration. Mech. An., 230 (2018), 397-426. doi: 10.1007/s00205-018-1248-y |
[8] | G. B. Arous and A. Guionnet, Large deviations for Wigner's law and Voiculescu's non-commutative entropy, Probab. Theory Rel. Fields, 108 (1997), 517-542. doi: 10.1007/s004400050119 |
[9] | G. Benfatto, P. Picco and M. Pulvirenti, On the invariant measures for the two-dimensional Euler flow, J. Stat. Phys., 46 (1987), 729-742. doi: 10.1007/BF01013382 |
[10] | T. Bodineau and A. Guionnet, About the stationary states of vortex systems, Ann. I. H. Poincare-PR, 35 (1999), 205-237. doi: 10.1016/S0246-0203(99)80011-9 |
[11] | F. Bouchet, C. Nardini and T. Tangarife, Non-equilibrium statistical mechanics of the stochastic Navier-Stokes equations and geostrophic turbulence, Warsaw University Press. 5th Warsaw School of Statistical Physics, 2014. |
[12] | F. Bouchet and J. Sommeria, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, J. Fluid Mech., 464 (2002), 165-207. |
[13] | E. Caglioti, P.-L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., 143 (1992), 501-525. doi: 10.1007/BF02099262 |
[14] | E. Caglioti, P.-L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II, Commun. Math. Phys., 174 (1995), 229-260. doi: 10.1007/BF02099602 |
[15] | G. Cavallaro, R. Garra and C. Marchioro, \newblock Localization and stability of active scalar flows, \newblock Riv. Math. Univ. Parma, 4 (2013), 175-196. |
[16] | D. Chae, Weak solutions of 2-D incompressible Euler equations, Nonlinear Analysis, 23 (1994), 629-638. doi: 10.1016/0362-546X(94)90242-9 |
[17] | D. Chae, P. Constantin, D. Cόrdoba, F. Gancedo, J. Wu, Generalized surface quasi-geostrophic equations with singular velocities, Commun. Pure Appl. Math., 65 (2012), 1037-1066. doi: 10.1002/cpa.21390 |
[18] | D. Chae, P. Constantin and J. Wu, Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., 202 (2011), 35-62. doi: 10.1007/s00205-011-0411-5 |
[19] | P.-H. Chavanis, From Jupiter's great red spot to the structure of galaxies: Statistical mechanics of two-dimensional vortices and stellar systems, Annals of the New York Academy of Sciences, 867 (1998), 120-140. doi: 10.1111/j.1749-6632.1998.tb11254.x |
[20] | P.-H. Chavanis, Statistical mechanics of two-dimensional vortices and stellar systems, In: Dynamics and thermodynamics of systems with long-range interactions, Vol. 602 of Lecture Notes in Phys., pp. 208-289. Springer, Berlin, 2002. |
[21] | A. J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech., 57 (1973), 785-796. doi: 10.1017/S0022112073002016 |
[22] | A. J. Chorin, The evolution of a turbulent vortex, Commun. Math. Phys., 83 (1982), 517-535. doi: 10.1007/BF01208714 |
[23] | A. J. Chorin, Equilibrium statistics of a vortex filament with applications, Commun. Math. Phys., 141 (1991), 619-631. doi: 10.1007/BF02102820 |
[24] | A. J. Chorin, Vorticity and turbulence, Vol. 103 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994. |
[25] | A. J. Chorin and J. H. Akao, Vortex equilibria in turbulence theory and quantum analogues, Physica D: Nonlinear Phenomena, 52 (1991), 403-414. doi: 10.1016/0167-2789(91)90136-W |
[26] | X. Carton, Instability of surface quasigeostrophic vortices, J. Atmos. Sci., 66 (2009), 1051-1062. doi: 10.1175/2008JAS2872.1 |
[27] | P. Constantin, G. Iyer and J. Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana U. Math. J., 57 (2008), 2681-2692. doi: 10.1512/iumj.2008.57.3629 |
[28] | P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533. doi: 10.1088/0951-7715/7/6/001 |
[29] | G. Conti and G. Badin, Velocity statistics for point vortices in the local ɑ-models of turbulence, to appear on Geophysical & Astrophysical Fluid Dynamics, 2019 |
[30] | D. Cordoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. Math., 148 (1998), 1135-1152. doi: 10.2307/121037 |
[31] | D. Cordoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations, J. Am. Math. Soc., 15 (2002), 665-670. doi: 10.1090/S0894-0347-02-00394-6 |
[32] | D. Cόrdoba, C. Fefferman and J. L. Rodrigo, Almost sharp fronts for the surface quasi-geostrophic equation, P. Natl. Acad. Sci. USA, 101 (2004), 2687-2691. doi: 10.1073/pnas.0308154101 |
[33] | D. Cόrdoba, M. A. Fontelos, A. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations, P. Natl. Acad. Sci. USA, 102 (2005), 5949-5952. doi: 10.1073/pnas.0501977102 |
[34] | D. Cόrdoba, J. Gόmez-Serrano and A. D. Ionescu, Global solutions for the generalized SQG patch equation, to appear on Arch. Rational. Mech. Anal., 2019. |
[35] | C. De Lellis and L. Székelyhidi, Jr, The Euler equations as a differential inclusion, Ann. Math., 170 (2009), 1417-1436. doi: 10.4007/annals.2009.170.1417 |
[36] | J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., 4 (1991), 553-586. doi: 10.1090/S0894-0347-1991-1102579-6 |
[37] | J.-M. Delort, Existence des nappes de tourbillon de signe fixe en dimension deux. In: Nonlinear partial differential equations and their applications, Pitman Research Notes in Mathematics Series, 1994. |
[38] | R. J. DiPerna and A. J. Majda, Concentrations in regularizations for 2-D incompressible flow, Commun. Pure Appl. Math., 40 (1987), 301-345. doi: 10.1002/cpa.3160400304 |
[39] | D. G. Dritschel, An exact steadily rotating surface quasi-geostrophic elliptical vortex, Geophys. Astro. Fluid, 105 (2011), 368-376. doi: 10.1080/03091929.2010.485997 |
[40] | G. L. Eyink and H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence, J. Stat. Phys., 70 (1993), 833-886. |
[41] | G. L. Eyink and K. R. Sreenivasan, Onsager and the theory of hydrodynamic turbulence, Rev. Mod. Phys., 78 (2006), 87-135. doi: 10.1103/RevModPhys.78.87 |
[42] | F. Flandoli, On a probabilistic description of small scale structures in 3D fluids, Ann. I. H. Poincare-Pr, 38 (2002), 207-228. doi: 10.1016/S0246-0203(01)01092-5 |
[43] | F. Flandoli, Weak vorticity formulation of 2D Euler equations with white noise initial condition, Commun. PDE, 43 (2018), 1102-1149. doi: 10.1080/03605302.2018.1467448 |
[44] | F. Flandoli and M. Gubinelli, The Gibbs ensemble of a vortex filament, Probab. Theory Rel. Fields, 122 (2002), 317-340. doi: 10.1007/s004400100163 |
[45] | F. Flandoli and M. Saal, mSQG equations in distributional spaces and point vortex approximation, to appear on J. Evol. Equat., 2019. |
[46] | U. Frisch, Turbulence, Cambridge University Press, Cambridge, 1995. |
[47] | J. Fröhlich and D. Ruelle, Statistical mechanics of vortices in an inviscid two-dimensional fluid, Commun. Math. Phys., 87 (1982), 1-36. doi: 10.1007/BF01211054 |
[48] | J. Fröhlich and E. Seiler, The massive Thirring-Schwinger model qed2: convergence of perturbation theory and particle structure, Helv. Phys. Acta, 49 (1976), 889-924. |
[49] | R. Garra, Confinement of a hot temperature patch in the modified SQG model, Discrete Contin. Dynam. Syst. B, 2018. |
[50] | C. Geldhauser and M. Romito, Limit theorems and fluctuations for point vortices of generalized Euler equations, arXiv:1810.12706, 2018. |
[51] | C. Geldhauser and M. Romito, Point vortices for inviscid generalized surface quasi-geostrophic models, arXiv:1812.05166, 2018. |
[52] | J. Goodman, T. Y. Hou and J. Lowengrub, Convergence of the point vortex method for the 2-D Euler equations, Comm. Pure Appl. Math., 43 (1990), 415-430. doi: 10.1002/cpa.3160430305 |
[53] | F. Grotto and M. Romito, A Central Limit Theorem for Gibbsian Invariant Measures of 2D Euler Equation, arXiv:1904.01871, 2019. |
[54] | M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009), 1357-1384. doi: 10.1142/S0218202509003814 |
[55] | I. M. Held, R. T. Pierrehumbert, S. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics, Journal of Fluid Mechanics, 282 (1995), 1-20. doi: 10.1017/S0022112095000012 |
[56] | I. M. Held, R. T. Pierrehumbert and K. L. Swanson, Spectra of local and nonlocal two-dimensional turbulence, Chaos, Solitons & Fractals, 4 (1994), 1111-1116. |
[57] | H. Helmholtz, über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 55 (1858), 25-55. |
[58] | V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032-1066. |
[59] | M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Commun. Pur. Appl. Math., 46 (1993), 27-56. doi: 10.1002/cpa.3160460103 |
[60] | M. K.-H. Kiessling and Y. Wang, Onsager's ensemble for point vortices with random circulations on the sphere, J. Stat. Phys., 148 (2012), 896-932. doi: 10.1007/s10955-012-0552-4 |
[61] | A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur, Journal of Mathematical Sciences, 166 (2009), 31-39. |
[62] | A. Kiselev, L. Ryzhik, Y. Yao and A. Zlatos, Finite time singularity for the modified SQG patch equation, Ann. Math., 184 (2016), 909-948. doi: 10.4007/annals.2016.184.3.7 |
[63] | R. Klein, A. J. Majda and K. Damodaran, Simplified equations for the interaction of nearly parallel vortex filaments, J. Fluid Mech., 288 (1995), 201-248. doi: 10.1017/S0022112095001121 |
[64] | R. H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10 (1967), 1417-1423. doi: 10.1063/1.1762301 |
[65] | T. Leblé, S. Serfaty and O. Zeitouni, Large deviations for the two-dimensional two-component plasma, Commun. Math. Phys., 350 (2017), 301-360. doi: 10.1007/s00220-016-2735-3 |
[66] | C. C. Lim and A. J. Majda, Point vortex dynamics for coupled surface/interior QG and propagating heton clusters in models for ocean convection, Geophys. Astro. Fluid, 94 (2001), 177-220. doi: 10.1080/03091920108203407 |
[67] | C. C. Lin, On the motion of vortices in two dimensions: I. Existence of the Kirchhoff-Routh function, P. Natl. Acad. Sci. USA, 27 (1941), 570-575. doi: 10.1073/pnas.27.12.570 |
[68] | C. C. Lin, On the motion of vortices in two dimensions: II. Some further investigations on the Kirchhoff-Routh function, P. Natl. Acad. Sci. USA, 27 (1941), 575-577. doi: 10.1073/pnas.27.12.575 |
[69] | P.-L. Lions, On Euler equations and statistical physics, Cattedra Galileiana [Galileo Chair], Scuola Normale Superiore, Classe di Scienze, Pisa, 1998. |
[70] | P.-L. Lions and A. Majda, Equilibrium statistical theory for nearly parallel vortex filaments, Commun. Pur. Appl. Math., 53 (2000), 76-142. doi: 10.1002/(SICI)1097-0312(200001)53:1<76::AID-CPA2>3.0.CO;2-L |
[71] | A. J. Majda and E. G. Tabak, A two-dimensional model for quasi-geostrophic flow: comparison with the two-dimensional Euler flow, Physica D: Nonlinear Phenomena, 98 (1996), 515-522. doi: 10.1016/0167-2789(96)00114-5 |
[72] | F. Marchand, Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces $L^p$ or $\dot H^-1/2$, Commun. Math. Phys., 277 (2008), 45-67. |
[73] | C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Commun. Math. Phys., 84 (1982), 483-503. doi: 10.1007/BF01209630 |
[74] | C. Marchioro and M. Pulvirenti, On the vortex-wave system. In: Mechanics, analysis and geometry: 200 years after Lagrange, North-Holland Delta Ser., pp. 79-95. North-Holland, Amsterdam, 1991. |
[75] | C. Marchioro and M. Pulvirenti, Vortices and localization in Euler flows, Commun. Math. Phys., 154 (1993), 49-61. doi: 10.1007/BF02096831 |
[76] | C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Springer-Verlag, New York, 1994. |
[77] | J. C. McWilliams, The emergence of isolated coherent vortices in turbulent flow, J. Fluid Mech., 146 (1984), 21-43. doi: 10.1017/S0022112084001750 |
[78] | J. Miller, Statistical mechanics of Euler equations in two dimensions, Phys. Rev. Lett., 65 (1990), 2137-2140. doi: 10.1103/PhysRevLett.65.2137 |
[79] | D. Montgomery and G. Joyce, Statistical mechanics of ``negative temperature'' states, Phys. Fluids, 17 (1974), 1139-1145. doi: 10.1063/1.1694856 |
[80] | D. Montgomery, W. Matthaeus, W. Stribling, D. Martinez, and S. Oughton Relaxation in two dimensions and the sinh-Poisson equation, Phys. Fluids, 4 (1992), 3-6. |
[81] | A. Nahmod, N. Pavlovic, G. Staffilani, et al. Global flows with invariant measures for the inviscid modified SQG equations, Stochastics and Partial Differential Equations: Analysis and Computations, 6 (2018), 184-210. doi: 10.1007/s40072-017-0106-5 |
[82] | C. Neri, Statistical mechanics of the $N$-point vortex system with random intensities on a bounded domain, Ann. I. H. Poincare-An, 21 (2004), 381-399. doi: 10.1016/j.anihpc.2003.05.002 |
[83] | C. Neri, Statistical mechanics of the $N$-point vortex system with random intensities on $\mathbbR^2$, Elec. J. Diff. Eq., 92 (2005), 1-26. |
[84] | K. Ohkitani, Asymptotics and numerics of a family of two-dimensional generalized surface quasi-geostrophic equations, Phys. Fluids, 24 (2012), 095101. |
[85] | L. Onsager, Statistical hydrodynamics, Nuovo Cim. (Suppl. 2), 6 (1949), 279-287. doi: 10.1007/BF02780991 |
[86] | E. A. Overman and N. J. Zabusky, Evolution and merger of isolated vortex structures, Phys. Fluids, 25 (1982), 1297-1305. doi: 10.1063/1.863907 |
[87] | F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation, Methods and Applications of Analysis, 9 (2002), 533-562. doi: 10.4310/MAA.2002.v9.n4.a4 |
[88] | M. Pulvirenti, On invariant measures for the 2-D Euler flow. In: Mathematical aspects of vortex dynamics, (Leesburg, VA, pp. 88-96, SIAM, 1989. |
[89] | S. G. Resnick, Dynamical problems in non-linear advective partial differential equations, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.), The University of Chicago. |
[90] | T. Ricciardi and R. Takahashi, Blow-up behavior for a degenerate elliptic sinh-Poisson equation with variable intensities, Calc. Var. PDE, 55 (2016), 152. |
[91] | T. Ricciardi and R. Takahashi, On radial two-species onsager vortices near the critical temperature, arXiv:1706.06046, 2017. |
[92] | T. Ricciardi, R. Takahashi, G. Zecca and X. Zhang On the existence and blow-up of solutions for a mean field equation with variable intensities, Rend. Lincei-Mat Appl., 27 (2016), 413-429. |
[93] | R. Robert, états d'équilibre statistique pour l'écoulement bidimensionnel d'un fluide parfait, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 575-578. |
[94] | R. Robert, A maximum-entropy principle for two-dimensional perfect fluid dynamics, J. Stat. Phys., 65 (1991), 531-553. doi: 10.1007/BF01053743 |
[95] | R. Robert, On the statistical mechanics of 2D Euler equation, Commun. Math. Phys., 212 (2000), 245-256. doi: 10.1007/s002200000210 |
[96] | R. Robert and J. Sommeria, Statistical equilibrium states for two-dimensional flows, J. Fluid Mech., 229 (1991), 291-310. doi: 10.1017/S0022112091003038 |
[97] | J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation, Commun. Pur. Appl. Math., 58 (2005), 821-866. doi: 10.1002/cpa.20059 |
[98] | K. Sawada and T. Suzuki, Rigorous Derivation of the Mean Field Equation for a Point Vortex System, Theoretical and Applied Mechanics Japan, 57 (2009), 233-239. |
[99] | S. Schochet, The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation, Commun. Part. Diff. Eq., 20 (1995), 1077-1104. doi: 10.1080/03605309508821124 |
[100] | N. Schorghofer, Energy spectra of steady two-dimensional turbulent flows, Phys. Rev. E, 61 (2000), 6572-6577. doi: 10.1103/PhysRevE.61.6572 |
[101] | R. K. Scott, A scenario for finite-time singularity in the quasigeostrophic model, J. Fluid Mech., 687 (2011), 492-502. doi: 10.1017/jfm.2011.377 |
[102] | R. K. Scott and D. G. Dritschel, Numerical simulation of a self-similar cascade of filament instabilities in the surface quasigeostrophic system, Phys. Rev. Lett., 112 (2014), 144505. |
[103] | C. Taylor and S. G. Llewellyn Smith, Dynamics and transport properties of three surface quasigeostrophic point vortices, Chaos: An Interdisciplinary Journal of Nonlinear Science, 26 (2016), 113117. |
[104] | C. V. Tran, Nonlinear transfer and spectral distribution of energy in ɑ turbulence, Phys. D, 191 (2004), 137-155. doi: 10.1016/j.physd.2003.11.005 |
[105] | C. V. Tran, D. G. Dritschel and R. K. Scott, Effective degrees of nonlinearity in a family of generalized models of two-dimensional turbulence, Phys. Rev. E, 81 (2010), 016301. |
[106] | A. Venaille, T. Dauxois and S. Ruffo, Violent relaxation in two-dimensional flows with varying interaction range, Phys. Rev. E, 92 (2015), 011001. |
[107] | W. Wolibner, Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., 37 (1933), 698-726. |