The logarithmic coefficients of univalent functions play an important role in different estimates in the theory of univalent functions. In this paper, due to the significant importance of the study of these coefficients, we find the upper bounds for some expressions associated with the logarithmic coefficients of functions that belong to some classes defined by using the subordination. Moreover, we get the best upper bounds for the logarithmic coefficients of some subclasses of analytic functions defined and studied in many earlier papers.
Citation: Ebrahim Analouei Adegani, Davood Alimohammadi, Teodor Bulboacă, Nak Eun Cho, Mahmood Bidkham. On the logarithmic coefficients for some classes defined by subordination[J]. AIMS Mathematics, 2023, 8(9): 21732-21745. doi: 10.3934/math.20231108
The logarithmic coefficients of univalent functions play an important role in different estimates in the theory of univalent functions. In this paper, due to the significant importance of the study of these coefficients, we find the upper bounds for some expressions associated with the logarithmic coefficients of functions that belong to some classes defined by using the subordination. Moreover, we get the best upper bounds for the logarithmic coefficients of some subclasses of analytic functions defined and studied in many earlier papers.
[1] | E. A. Adegani, N. E. Cho, M. Jafari, Logarithmic coefficients for univalent functions defined by subordination, Mathematics, 7 (2019), 408. https://doi.org/10.3390/math7050408 doi: 10.3390/math7050408 |
[2] | E. A. Adegani, T. Bulboacă, N. Hameed Mohammed, P. Zaprawa, Solution of logarithmic coefficients conjectures for some classes of convex functions, Math. Slovaca, 73 (2023), 79–88. https://doi.org/10.1515/ms-2023-0009 doi: 10.1515/ms-2023-0009 |
[3] | E. A. Adegani, A. Motamednezhad, T. Bulboacă, N. E. Cho, Logarithmic coefficients for some classes defined by subordination, Axioms, 12 (2023), 332. https://doi.org/10.3390/axioms12040332 doi: 10.3390/axioms12040332 |
[4] | E. A. Adegani, A. Motamednezhad, M. Jafari, T. Bulboacă, Logarithmic coefficients inequality for the family of functions convex in one direction, Mathematics, 11 (2023), 2140. https://doi.org/10.3390/math11092140 doi: 10.3390/math11092140 |
[5] | M. F. Ali, A. Vasudevarao, On logarithmic coefficients of some close-to-convex functions, Proc. Amer. Math. Soc., 146 (2018), 1131–1142. https://doi.org/10.1090/proc/13817 doi: 10.1090/proc/13817 |
[6] | D. Alimohammadi, E. A. Adegani, T. Bulboacă, N. E. Cho, Successive coefficients of functions in classes defined by subordination, Anal. Math. Phys., 11 (2021), 151. https://doi.org/10.1007/s13324-021-00586-1 doi: 10.1007/s13324-021-00586-1 |
[7] | D. Alimohammadi, E. A. Adegani, T. Bulboacă, N. E. Cho, Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions, J. Funct. Space., 2021 (2021), 6690027. https://doi.org/10.1155/2021/6690027 doi: 10.1155/2021/6690027 |
[8] | N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, On the third logarithmic coefficient in some subclasses of close-to-convex functions, RACSAM 114 (2020), 52. https://doi.org/10.1007/s13398-020-00786-7 doi: 10.1007/s13398-020-00786-7 |
[9] | P. L. Duren, Univalent functions, New York: Springer, 1983. |
[10] | P. L. Duren, Y. J. Leung, Logarithmic coefficients of univalent functions, J. Anal. Math., 36 (1979), 36–43. https://doi.org/10.1007/BF02798766 doi: 10.1007/BF02798766 |
[11] | A. Ebadian, N. H. Mohammed, E. A. Adegani, T. Bulboacă, New results for some generalizations of starlike and convex functions, J. Funct. Space., 2020 (2020), 7428648. https://doi.org/10.1155/2020/7428648 doi: 10.1155/2020/7428648 |
[12] | P. Gupta, S. Nagpal, V. Ravichandran, Inclusion relations and radius problems for a subclass of starlike functions, J. Korean Math. Soc., 58 (2021), 1147–1180. |
[13] | K. Khatter, V. Ravichandran, S. S. Kumar, Starlike functions associated with exponential function and the lemniscate of Bernoulli, RACSAM, 113 (2019), 233–253. https://doi.org/10.1007/s13398-017-0466-8 doi: 10.1007/s13398-017-0466-8 |
[14] | B. Kowalczyk, A. Lecko, The second Hankel determinant of the logarithmic coefficients of strongly starlike and strongly convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 117 (2023), 91. https://doi.org/10.1007/s13398-023-01427-5 doi: 10.1007/s13398-023-01427-5 |
[15] | S. S. Kumar, G. Kamaljeet, A cardioid domain and starlike functions, Anal. Math. Phys., 11 (2021), 54. https://doi.org/10.1007/s13324-021-00483-7 doi: 10.1007/s13324-021-00483-7 |
[16] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157–169. |
[17] | I. M. Milin, Univalent functions and orthonormal systems, Providence, R. I.: American Mathematical Society, 1977. |
[18] | I. M. Milin, On a property of the logarithmic coefficients of univalent functions, In: Metric Questions in the Theory of Functions, Kiev: Naukova Dumka, 1980, 86–90. |
[19] | I. M. Milin, On a conjecture for the logarithmic coefficients of univalent functions, Zap. Nauch. Sem. LOMI, 125 (1983), 135–143. |
[20] | S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, New York: Marcel Dekker Inc., 2000. |
[21] | N. H. Mohammed, Sharp bounds of logarithmic coefficient problems for functions with respect to symmetric points, Mat. Stud., 59 (2023), 68–75. https://doi.org/10.30970/ms.59.1.68-75 doi: 10.30970/ms.59.1.68-75 |
[22] | N. H. Mohammed, E. A. Adegani, T. Bulboacă, N. E. Cho, A family of holomorphic functions defined by differential inequality, Math. Inequal. Appl., 25 (2022), 27–39. https://doi.org/10.7153/mia-2022-25-03 doi: 10.7153/mia-2022-25-03 |
[23] | M. Obradović, S. Ponnusamy, K.-J. Wirths, Logarithmic coeffcients and a coefficient conjecture for univalent functions, Monatsh. Math., 185 (2018), 489–501. |
[24] | S. Ponnusamy, N. L. Sharma, K.-J. Wirths, Logarithmic coefficients problems in families related to starlike and convex functions, J. Aust. Math. Soc., 109 (2020), 230–249. https://doi.org/10.1017/S1446788719000065 doi: 10.1017/S1446788719000065 |
[25] | U. Pranav Kumar, A. Vasudevarao, Logarithmic coefficients for certain subclasses of close-to-convex functions, Monatsh. Math., 187 (2018), 543–563. |
[26] | R. K. Raina, J. Sokół, Some properties related to a certain class of starlike functions, C. R. Math., 353 (2015), 973–978. https://doi.org/10.1016/j.crma.2015.09.011 doi: 10.1016/j.crma.2015.09.011 |
[27] | W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc., 48 (1945), 48–82. https://doi.org/10.1112/plms/s2-48.1.48 doi: 10.1112/plms/s2-48.1.48 |
[28] | K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27 (2016), 923. https://doi.org/10.1007/s13370-015-0387-7 doi: 10.1007/s13370-015-0387-7 |
[29] | T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J., 37 (1970), 775–777. https://doi.org/10.1215/S0012-7094-70-03792-0 doi: 10.1215/S0012-7094-70-03792-0 |
[30] | H. Tang, K. R. Karthikeyan, G. Murugusundaramoorthy, Certain subclass of analytic functions with respect to symmetric points associated with conic region, AIMS Mathematics, 6 (2021), 12863–12877. https://doi.org/10.3934/math.2021742 doi: 10.3934/math.2021742 |
[31] | D. K. Thomas, On the logarithmic coefficients of close to convex functions, Proc. Amer. Math. Soc., 144 (2016), 1681–1687. https://doi.org/10.1090/proc/12921 doi: 10.1090/proc/12921 |
[32] | A. Vasudevarao, D. K. Thomas, The logarithmic coefficients of univalent functions-an overview, In: Current Research in Mathematical and Computer Sciences II, Olsztyn: UWM, 2018, 257–269. |