Research article

Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution

  • Received: 11 March 2024 Revised: 15 May 2024 Accepted: 21 May 2024 Published: 28 June 2024
  • MSC : 30C45, 30C80, 33E12

  • In this paper, we derive several fuzzy differential subordination and fuzzy differential superordination results for analytic functions $ \mathcal{M}_{\xi, \beta}^{s, \gamma} $, which involve the extended Mittag-Leffler function and the Pascal distribution series. We also investigate and introduce a class $ \mathcal{MB}_{\xi, \beta}^{F, s, \gamma}(\rho) $ of analytic and univalent functions in the open unit disc $ \mathcal{D} $ by employing the newly defined operator $ \mathcal{M}_{\xi, \beta}^{s, \gamma} $. We determine a specific relationship of inclusion for this class. Further, we establish prerequisites for a function role in serving as both the fuzzy dominant and fuzzy subordinant of the fuzzy differential subordination and superordination, respectively. Some novel results that are sandwich-type can be found here.

    Citation: Madan Mohan Soren, Luminiţa-Ioana Cotîrlǎ. Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution[J]. AIMS Mathematics, 2024, 9(8): 21053-21078. doi: 10.3934/math.20241023

    Related Papers:

  • In this paper, we derive several fuzzy differential subordination and fuzzy differential superordination results for analytic functions $ \mathcal{M}_{\xi, \beta}^{s, \gamma} $, which involve the extended Mittag-Leffler function and the Pascal distribution series. We also investigate and introduce a class $ \mathcal{MB}_{\xi, \beta}^{F, s, \gamma}(\rho) $ of analytic and univalent functions in the open unit disc $ \mathcal{D} $ by employing the newly defined operator $ \mathcal{M}_{\xi, \beta}^{s, \gamma} $. We determine a specific relationship of inclusion for this class. Further, we establish prerequisites for a function role in serving as both the fuzzy dominant and fuzzy subordinant of the fuzzy differential subordination and superordination, respectively. Some novel results that are sandwich-type can be found here.


    加载中


    [1] T. Bulboacă, Differential subordinations and superordinations: recent results, House of Scientific Book Publishing, 2005.
    [2] S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, CRC Press, 2000. https://doi.org/10.1201/9781482289817
    [3] M. G. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha(x)}$, C. R. Hebd. Séances Acad. Sci., 137 (1903), 554–558.
    [4] M. G. Mittag-Leffler, Sur la représentation analytique d'une fonction monogene (cinquieme note), Acta Math., 29 (1905), 101–181.
    [5] A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081. https://doi.org/10.2298/FIL1607075A doi: 10.2298/FIL1607075A
    [6] B. A. Frasin, T. Al-Hawary, F. Yousef, Some properties of a linear operator involving generalized Mittag-Leffler function, Stud. Univ. Babeş-Bolyai Math., 65 (2020), 67–75. https://doi.org/10.24193/subbmath.2020.1.06
    [7] H. M. Srivastava, M. K. Bansal, P. Harjule, A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function, Math. Methods Appl. Sci., 41 (2018), 6108–6121. https://doi.org/10.1002/mma.5122 doi: 10.1002/mma.5122
    [8] R. P. Agarwal, A propos d'une note de H4. Pierre Humbert, C. R. Hebd. Séances Acad. Sci., 236 (1953), 2031–2032.
    [9] A. Wiman, Über den fundamental Satz in der theorie der functionen $E_{\alpha}(x)$, Acta Math., 29 (1905), 191–201. http://doi.org/10.1007/BF02403202 doi: 10.1007/BF02403202
    [10] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15.
    [11] S. M. El-Deeb, T. Bulboacă, Differential sandwich-type results for symmetric functions associated with Pascal distribution series, J. Contemp. Math. Anal., 56 (2021), 214–224. http://doi.org/10.3103/S1068362321040105 doi: 10.3103/S1068362321040105
    [12] S. M. El-Deeb, L. I. Cotârlă, New results about fuzzy differential subordinations associated with Pascal distribution, Symmetry, 15 (2023), 1589. https://doi.org/10.3390/sym15081589 doi: 10.3390/sym15081589
    [13] H. M. Srivastava, S. M. El-Deeb, Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution, Symmetry, 13 (2021), 1023. http://doi.org/10.3390/sym13061023 doi: 10.3390/sym13061023
    [14] L.A. Zadeh, Fuzzy Sets, Inf. Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X
    [15] S. Laengle, V. Lobos, J. M. Merigó, E. Herrera-Viedma, M. J. Cobo, B. de Baets, Forty years of fuzzy sets and systems: a bibliometric analysis, Fuzzy Sets Syst., 402 (2021), 155–183. https://doi.org/10.1016/j.fss.2020.03.012 doi: 10.1016/j.fss.2020.03.012
    [16] G. I. Oros, G. Oros, The notion of subordination in fuzzy sets theory, Gen. Math., 19 (2011), 97–103.
    [17] G. I. Oros, G. Oros, Fuzzy differential subordination, Acta Univ. Apulensis, 30 (2012), 55–64.
    [18] G. I. Oros, G. Oros, Dominant and best dominant for fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2012), 239–248.
    [19] W. G. Atshan, K. O. Hussain, Fuzzy differential superordination, Theory Appl. Math. Comput. Sci., 7 (2017), 27–38.
    [20] Ş. Altinkaya, A. K. Wanas, Some properties for fuzzy differential subordination defined by Wanas operator, Earthline J. Math. Sci., 4 (2020), 51–62. https://doi.org/10.34198/ejms.4120.5162 doi: 10.34198/ejms.4120.5162
    [21] A. K. Wanas, Fuzzy differential subordinations of analytic functions invloving Wanas operator, Ikonian J. Math., 2 (2020), 19.
    [22] A. A. Lupaş, New applications of fuzzy set concept in the geometric theory of analytic functions, Axioms, 12 (2023), 494. https://doi.org/10.3390/axioms12050494 doi: 10.3390/axioms12050494
    [23] A. A. Lupaş, Fuzzy differential inequalities for convolution product of Ruscheweyh derivative and multiplier transformation, Axioms, 12 (2023), 470. https://doi.org/10.3390/axioms12050470 doi: 10.3390/axioms12050470
    [24] A. A. Lupaş, Gh. Oros, On special fuzzy differential subordinations using Sălăgean and Ruscheweyh operators, Appl. Math. Comput., 261 (2015), 119–127. https://doi.org/10.1016/j.amc.2015.03.087 doi: 10.1016/j.amc.2015.03.087
    [25] K. I. Noor, M. A. Noor, fuzzy differential subordination involving generalized Noor-Salagean operator, Inf. Sci. Lett., 11 (2022), 1905–1911. https://doi.org/10.18576/isl/110606 doi: 10.18576/isl/110606
    [26] B. Kanwal, S. Hussain, A. Saliu, Fuzzy differential subordination related to strongly Janowski functions, Appl. Math. Sci. Eng., 31 (2023), 2170371. https://doi.org/10.1080/27690911.2023.2170371 doi: 10.1080/27690911.2023.2170371
    [27] A. F. Azzam, S. A. Shah, A. Cătaş, L. -I. Cotârlă, On fuzzy spiral-like functions associated with the family of linear operators, Fractal Fract., 7 (2023), 145. https://doi.org/10.3390/fractalfract7020145 doi: 10.3390/fractalfract7020145
    [28] A. K. Wanas, D. A. Hussein, Fuzzy differential subordinations results for $\lambda$-pseudo starlike and $\lambda$-pseudo convex functions with respect to symmetrical points, Earthline J. Math. Sci., 4 (2020), 129–137. https://doi.org/10.34198/ejms.4120.129137 doi: 10.34198/ejms.4120.129137
    [29] H. M. Srivastava, Univalent functions, fractional calculus and aoosciated generalized hypergeomtric functions, In: Univalent functions, fractional calculus, and their applications, Halsted Press, 1989,329–354.
    [30] O. P. Ahuja, A. Çetinkaya, Use of quantum calculus approach in mathematical sciences and its role in geometric function theory, AIP Conf. Proc., 2095 (2019), 020001. https://doi.org/10.1063/1.5097511 doi: 10.1063/1.5097511
    [31] H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
    [32] A. A. Lupaş, G. I. Oros, Fuzzy differential subordination and superordination results involving the $q$-hypergeometric function and fractional calculus aspects, Mathematics, 10 (2022), 4121. https://doi.org/10.3390/math10214121 doi: 10.3390/math10214121
    [33] A. A. Lupaş, S. A. Shah, L. F. Iambor, Fuzzy differential subordination and superordination results for $q$-analogue of multiplier transformation, AIMS Math., 8 (2023), 15569–15584. https://doi.org/10.3934/math.2023794 doi: 10.3934/math.2023794
    [34] S. A. Shah, E. E. Ali, A. Cătaş, A. M. Albalahi, On fuzzy differential subordination associated with $q$-difference operator, AIMS Math., 8 (2023), 6642–6650. https://doi.org/10.3934/math.2023336 doi: 10.3934/math.2023336
    [35] A. K. Wanas, A. H. Majeed, Fuzzy subordination results for fractional integral associated with generalized Mittag-Leffler function, Eng. Math. Lett., 2019 (2019), 10.
    [36] A. K. Wanas, S. Bulut, Some results for fractional derivative associated with fuzzy differential subordinations, J. Al-Qadisiyah Comput. Sci. Math., 12 (2020), 27–36.
    [37] A. A. Lupaş, Applications of the fractional calculus in fuzzy differential subordinations and superordinations, Mathematics, 9 (2021), 2601. https://doi.org/10.3390/math9202601 doi: 10.3390/math9202601
    [38] M. Acu, Gh. Oros, A. M. Rus, Fractional integral of the confluent hypergeometric function related to fuzzy differential subordination theory, Fractal Fract., 6 (2022), 413. https://doi.org/10.3390/fractalfract6080413 doi: 10.3390/fractalfract6080413
    [39] A. Alb Lupaş, On special fuzzy differential subordinations obtained for Riemann-Liouville fractional integral of Ruscheweyh and Sălăgean operators, Axioms, 11 (2022), 428. https://doi.org/10.3390/axioms11090428 doi: 10.3390/axioms11090428
    [40] A. Alb Lupaş, A. Cătaş, Fuzzy differential subordination of the Atangana-Baleanu fractional integral, Symmetry, 13 (2021), 1929. https://doi.org/10.3390/sym13101929 doi: 10.3390/sym13101929
    [41] G. I. Oros, S. Dzitac, Applications of subordination chains and fractional integral in fuzzy differential subordinations, Mathematics, 10 (2022), 1690. https://doi.org/10.3390/math10101690 doi: 10.3390/math10101690
    [42] S. G. Gal, A. I. Ban, Elemente de mathematica fuzzy, Editura Universitatea din Oradea, 1996.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(433) PDF downloads(35) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog