Research article

Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces

  • Received: 15 March 2021 Accepted: 06 August 2021 Published: 11 August 2021
  • MSC : 53C40, 53C42

  • In this paper, we compute sub-Riemannian limits of Gaussian curvature for a Euclidean $ C^2 $-smooth surface in the generalized affine group and the generalized BCV spaces away from characteristic points and signed geodesic curvature for Euclidean $ C^2 $-smooth curves on surfaces. We get Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces.

    Citation: Tong Wu, Yong Wang. Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces[J]. AIMS Mathematics, 2021, 6(11): 11655-11685. doi: 10.3934/math.2021678

    Related Papers:

  • In this paper, we compute sub-Riemannian limits of Gaussian curvature for a Euclidean $ C^2 $-smooth surface in the generalized affine group and the generalized BCV spaces away from characteristic points and signed geodesic curvature for Euclidean $ C^2 $-smooth curves on surfaces. We get Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces.



    加载中


    [1] Z. Balogh, J. Tyson, E. Vecchi, Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 287 (2017), 1–38. doi: 10.1007/s00209-016-1815-6
    [2] Z. Balogh, J. Tyson, E. Vecchi, Correction to: Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 296 (2020), 875–876. doi: 10.1007/s00209-019-02234-8
    [3] L. Capogna, D. Danielli, S. Pauls, J. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Basel: Birkhauser Verlag, 2007.
    [4] M. Diniz, M. Veloso, Gauss-Bonnet theorem in sub-Riemannian Heisenberg space, J. Dyn. Control Syst., 22 (2016), 807–820. doi: 10.1007/s10883-016-9338-3
    [5] M. Veloso, Rotation surfaces of constant Gaussian curvature as Riemannian approximation scheme in sub-Riemannian Heisenberg space $\mathbb{H}^1$, arXiv: 1909.13341.
    [6] Y. Wang, S. Wei, Gauss-Bonnet theorems in the affine group and the group of rigid motions of the Minkowski plane, Sci. China Math., 2020, https://doi.org/10.1007/s11425-019-1667-5.
    [7] Y. Wang, S. Wei, Gauss-Bonnet theorems in the BCV spaces and the twisted Heisenberg Group, Results Math., 75 (2020), 126. doi: 10.1007/s00025-020-01254-9
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1972) PDF downloads(89) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog