In this paper, we introduce the concept of partial fuzzy k-(pseudo-)metric spaces, which is a generalization of fuzzy metric type spaces which introduced by Saadati. Also, we study some properties in partial fuzzy k-metric spaces and give some examples to support our results. Furthermore, we investigate the topological structures of partial fuzzy k-pseudo-metric spaces. Finally, we prove the existence of fixed points in these spaces.
Citation: Yaoqiang Wu. On partial fuzzy k-(pseudo-)metric spaces[J]. AIMS Mathematics, 2021, 6(11): 11642-11654. doi: 10.3934/math.2021677
In this paper, we introduce the concept of partial fuzzy k-(pseudo-)metric spaces, which is a generalization of fuzzy metric type spaces which introduced by Saadati. Also, we study some properties in partial fuzzy k-metric spaces and give some examples to support our results. Furthermore, we investigate the topological structures of partial fuzzy k-pseudo-metric spaces. Finally, we prove the existence of fixed points in these spaces.
[1] | Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86 (1982), 74–95. |
[2] | J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Set. Syst., 46 (1992), 107–113. doi: 10.1016/0165-0114(92)90271-5 |
[3] | Z. Hassanzadeh, S. Sedghi, Relation between b-metric and fuzzy metric spaces, Math. Moravica, 22 (2018), 55–63. doi: 10.5937/MatMor1801055H |
[4] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399. doi: 10.1016/0165-0114(94)90162-7 |
[5] | M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst., 27 (1988), 385–389. doi: 10.1016/0165-0114(88)90064-4 |
[6] | V. Gregori, J. J. Miñana, D. Miravet, Fuzzy partial metric spaces, Fuzzy Set. Syst., 48 (2019), 260–279. |
[7] | V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Set. Syst., 115 (2000), 485–489. doi: 10.1016/S0165-0114(98)00281-4 |
[8] | V. Gregori, S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topol., 5 (2004), 129–136. |
[9] | V. Gregori, A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Set. Syst., 125 (2002), 245–252. doi: 10.1016/S0165-0114(00)00088-9 |
[10] | O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Set. Syst., 12 (1984), 215–229. |
[11] | I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[12] | A. S. Mashhour, A. A. Allam, F. S. Mahmoud, F. H. Khedr, On supra topological spaces, Indian J. Pure Appl. Math., 14 (1983), 502–510. |
[13] | S. G. Matthews, Partial metric topology, Ann. Nk. Acad. Sci., 728 (1994), 183–197. |
[14] | K. Menger, Statistical metrics, P. Natl. Acad. Sci. USA, 28 (1942), 535–537. |
[15] | D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Set. Syst., 144 (2004), 431–439. doi: 10.1016/S0165-0114(03)00305-1 |
[16] | S. N${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over a} }} $d${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over a} }} $ban, Fuzzy b-metric spaces, Int. J. Comput. Commun. Control, 11 (2016), 273–281. |
[17] | T. Öner, M. B. Kandemire, B. Tanay, Fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 610–616. |
[18] | R. Saadati, On the topology of fuzzy metric type spaces, Filomat, 29 (2015), 133–141. doi: 10.2298/FIL1501133S |
[19] | B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334. |
[20] | Y. H. Shen, D. Qiu, W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Lett., 25 (2012), 138–141. doi: 10.1016/j.aml.2011.08.002 |
[21] | S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703–711. doi: 10.1007/s00009-013-0327-4 |
[22] | A. ${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over S} }} $ostak, Some remarks on fuzzy k-pseudometric spaces, Filomat, 32 (2018), 3567–3580. doi: 10.2298/FIL1810567S |
[23] | Y. L. Yue, M. Q. Gu, Fuzzy partial (pseudo-)metric spaces, J. Intell. Fuzzy Syst., 27 (2014), 1153–1159. doi: 10.3233/IFS-131078 |
[24] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. |
[25] | D. P. Yin, M. G. Yang, L. Deng, Existence of fixed point for generalized contraction mapping in fuzzy metric spaces, J. Southwest Univ. Nat. Sci. Eds., 36 (2014), 92–95. |
[26] | T. Öner, A. Šostak, On metric-type spaces based on extended T-conorms, Mathematics, 8 (2020), 1097. doi: 10.3390/math8071097 |
[27] | A. Kamal, Asmaa M. Abd-Elalb, Fixed point for fuzzy mappings in different generalized types of metric spaces, J. Math. Comput. Sci., 25 (2022), 84–90. |
[28] | S. M. Abusalim, Z. M. Fadail, New coupled and common coupled fixed point results with generalized $c$-distance on cone b-metric spaces, J. Math. Computer Sci., 25 (2022), 209–218. |
[29] | M. A. Ahmed, I. Beg, S. A. Khafagy, H. A. Nafadi, Fixed points for a sequence of $L$-fuzzy mappings in non-Archimedean ordered modified intuitionistic fuzzy metric spaces, J. Nonlinear Sci. Appl., 14 (2021), 97–108. |
[30] | S. Antal, U. C. Gairola, Generalized Suzuki type $\alpha$-Z-contraction in $b$-metric space, J. Nonlinear Sci. Appl., 13 (2020), 212–222. doi: 10.22436/jnsa.013.04.06 |
[31] | R. Bellman, E. S. Lee, Functional equations in dynamic programming, Aequationes Math., 17 (1978), 1–18. doi: 10.1007/BF01818535 |