In this paper, we investigate the relation of generalized Meijer $ G $-functions with some other special functions. We prove the generalized form of Laguerre polynomials, product of Laguerre polynomials with exponential functions, logarithmic functions in terms of generalized Meijer $ G $-functions. The generalized confluent hypergeometric functions and generalized tricomi confluent hypergeometric functions are also expressed in terms of the generalized Meijer $ G $-functions.
Citation: Syed Ali Haider Shah, Shahid Mubeen. Expressions of the Laguerre polynomial and some other special functions in terms of the generalized Meijer $ G $-functions[J]. AIMS Mathematics, 2021, 6(11): 11631-11641. doi: 10.3934/math.2021676
In this paper, we investigate the relation of generalized Meijer $ G $-functions with some other special functions. We prove the generalized form of Laguerre polynomials, product of Laguerre polynomials with exponential functions, logarithmic functions in terms of generalized Meijer $ G $-functions. The generalized confluent hypergeometric functions and generalized tricomi confluent hypergeometric functions are also expressed in terms of the generalized Meijer $ G $-functions.
[1] | E. D. Rainville, Special functions, New Yark: The Macmillan Company, 1960. |
[2] | J. D. Konhauser, Biorthogonal polynomials suggested by the Laguerre polynomials, Pacif. J. Math., 21 (1967), 303–314. doi: 10.2140/pjm.1967.21.303 |
[3] | C. Hwang, Y. P. Shih, Parameter identification via Laguerre polynomials, Int. J. Syst. Sci., 13 (1982), 209–217. doi: 10.1080/00207728208926341 |
[4] | R. Aktas, E. Erkus-Duman, The Laguerre polynomials in several variables, Math. Slovca, 63 (2013), 531–544. doi: 10.2478/s12175-013-0116-3 |
[5] | S. Y. Tan, T. R. Huang, Y. M. Chu, Functional inequalities for Gaussian hypergeometric function and generalized elliptic integral of the first kind, Math. Slovaca, 71 (2021), 667–682. doi: 10.1515/ms-2021-0012 |
[6] | M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, New York: Dover, Government Printing Office, 1965. |
[7] | G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc., 347 (1995), 1713–1723. doi: 10.1090/S0002-9947-1995-1264800-3 |
[8] | G. Anderson, M. Vamanamurthy, M. Vuorinen, Inequalities for quasiconformal mappings in space, Pacif. J. Math., 160 (1993), 1–18. doi: 10.2140/pjm.1993.160.1 |
[9] | M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mt. J. Math., 46 (2016), 679–691. |
[10] | S. L. Qiu, X. Y. Ma, Y. M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl., 474 (2019), 1306–1337. doi: 10.1016/j.jmaa.2019.02.018 |
[11] | V. Kiryakova, Generalized fractional calculus and applications, UK: Longman, Harlow, 1994. |
[12] | L. C. Andrews, Special functions for engineers and applied mathematicians, New York: Macmillan, 1985. |
[13] | Y. L. Luke, The special functions and their approximations, New York: Academic Press, 1969. |
[14] | A. Klimyik, Meijer $G$-function, Berlin: Springer, 2001. |
[15] | R. A. Askey, Meijer $G$-function, In: D. Adri, B. Olde, NIST handbook of mathematical functions, Cambridge: Cambridge University Press, 2010. |
[16] | A. M. Mathai, R. K. Saxena, H. J. Haubold, The $H$-function theory and applications, New York, Dordrecht Heidelberg London: Springer, 2009. |
[17] | R. Beals, J. Szmigielski, Meijer $G$-function: A gentle introduction, Notices AMS, 60 (2013), 866–872. doi: 10.1090/noti1016 |
[18] | S. Pincherly, Sullefunzioni ipergeometriche generalizzante, Atti R. Accademia Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 4 (1888), 694–700. |
[19] | H. J. Mellin, Abripeiner einhaitlichen Theorie der Gamma und der Hypergeometrischen Funktionen, Math. Ann., 68 (1910), 305–307. doi: 10.1007/BF01475775 |
[20] | V. Adamchik, The evaluation of integrals of Bessel functions via $G$-function identities, J. Comput. Appl. Math., 64 (1995), 283–290. doi: 10.1016/0377-0427(95)00153-0 |
[21] | V. C. Adamchik, O. I. Merichev, The algorithm for calculating integrals of hypergeometric type functions and its realization in reduces system, In: Proceedings of the international symposium on Symbolic and algebraic computation (ISSAC'90), Association for Computing Machinery, New York, NY, USA, 1990,212–224. |
[22] | L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, 1966. |
[23] | C. S. Meijer, Expension theorems for the $G$-function. V, Proc. Kon. Ned. Akad. v. Wetensch., Ser. A, 60 (1953), 349–397. |
[24] | N. E. Norlund, Hypergeometric functions, Act. Math., 94 (1955), 289–349. |
[25] | A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and series, Volume 3: More special functions, New York: Gordon and Breach, 1990. |
[26] | M. S. Milgram, On some sums of Meijer's $G$-functions, AECL-5827, 1977. |
[27] | E. R. Hansen, A table of series and products, Prentice-Hall, 1975,425–437. |
[28] | C. G. Kokologiannaki, Properties and inequalities of generalized $k$-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci., 5 (2010), 653–660. |
[29] | C. G. Kokologiannaki, V. Krasniqi, Some properties of $k$-gamma function, Le Math., 1 (2013), 13–22, |
[30] | V. Krasniqi, A limit for the $k$-gamma and $k$-beta function, Int. Math. Forum, 5 (2010), 1613–1617. |
[31] | M. Mansoor, Determining the $k$-generalized gamma function $\Gamma_{k}(x)$ by functional equations, Int. J. Contemp. Math. Sci., 4 (2009), 1037–1042. |
[32] | S. Mubeen, G. M. Habibullah, An integral representation of some $k$-hypergeometric functions, Int. Math. Forum, 7 (2012), 203–207. |
[33] | S. Mubeen, G. M. Habibullah, $k$-Fractional integrals and applications, Int. J. Math. Sci., 7 (2012), 89–94. |
[34] | S. Mubeen, A. Rehman, F. Shaheen, Properties of $k$-gamma, $k$-beta and $k$-psi functions, Both. J., 4 (2014), 371–379. |
[35] | S. Mubeen, Solution of some integral equations involving confluent $k$-hypergeometric functions, J. Appl. Math., 4 (2013), 9–11. doi: 10.4236/am.2013.47A003 |
[36] | F. Merovci, Power product inequalities for the $\Gamma_{k}$ function, Int. J. Math. Anal., 4 (2010), 1007–1012. |
[37] | S. Mubeen, A. Rehman, F. Shaheen, Some nequalities involving $k$-gamma and $k$-beta functions with applications, J. Inequal. Appl., 2014 (2014), 224. doi: 10.1186/1029-242X-2014-224 |
[38] | S. Mubeen, M. Naz, A. Rehman, G. Rehman, Solutions of $k$-hypergeometric differentail equations, J. Appl. Math., 2014 (2014), 1–3. |
[39] | R. Diaz, C. Teruel, $q, k$-generalized gamma and beta function, J. Nonlinear Math. Phys., 12 (2005), 118–134. doi: 10.2991/jnmp.2005.12.1.10 |
[40] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat., 15 (2007), 179–192. |