Research article

Probabilistic $ (\omega, \gamma, \phi) $-contractions and coupled coincidence point results

  • Received: 07 April 2021 Accepted: 09 August 2021 Published: 11 August 2021
  • MSC : 47H10, 54H25

  • In this paper, we introduce the notion of probabilistic $ (\omega, \gamma, \phi) $-contraction and establish the existence coupled coincidence points for mixed monotone operators subjected to the introduced contraction in the framework of ordered Menger $ PM $-spaces with Had${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }}$ić type $ t $-norm. As an application, a corresponding result in the setup of fuzzy metric space is also obtained.

    Citation: Manish Jain, Deepak Jain, Choonkil Park, Dong Yun Shin. Probabilistic $ (\omega, \gamma, \phi) $-contractions and coupled coincidence point results[J]. AIMS Mathematics, 2021, 6(11): 11620-11630. doi: 10.3934/math.2021675

    Related Papers:

  • In this paper, we introduce the notion of probabilistic $ (\omega, \gamma, \phi) $-contraction and establish the existence coupled coincidence points for mixed monotone operators subjected to the introduced contraction in the framework of ordered Menger $ PM $-spaces with Had${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }}$ić type $ t $-norm. As an application, a corresponding result in the setup of fuzzy metric space is also obtained.



    加载中


    [1] S. K. Bhandari, D. Gopal, P. Konar, Probabilistic $\alpha$-min Ćirić type contraction results using a control function, AIMS Mathematics, 5 (2020), 1186–1198. doi: 10.3934/math.2020082
    [2] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393. doi: 10.1016/j.na.2005.10.017
    [3] S. Chauhan, S. Radenović, M. Imdad, C. Vetro, Some integral type fixed point theorems in non-Archmedean Menger $PM$-spaces with common property (E.A) and application of functional equations in dynamic programming, RACSAM, 108 (2014), 795–810. doi: 10.1007/s13398-013-0142-6
    [4] B. S. Choudhury, P. Das, A new contraction mapping principle in partially ordered fuzzy metric spaces, AFMI, 8 (2014), 889–901. doi: 10.12988/astp.2014.48114
    [5] L. Ćirić, Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces, Nonlinear Anal., 72 (2010), 2009–2018. doi: 10.1016/j.na.2009.10.001
    [6] L. Ćirić, R. P. Agarwal, B. Samet, Mixed monotone generalized contractions in partially ordered probabilistic metric spaces, Fixed Point Theory Appl., 2011 (2011), 56. doi: 10.1186/1687-1812-2011-56
    [7] L. Ćirić, D. Miheţ, R. Saadati, Monotone generalized contractions in partially ordered probabilistic metric spaces, Topology Appl., 156 (2009), 2838–2844. doi: 10.1016/j.topol.2009.08.029
    [8] D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in Menger $PM$-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955–967.
    [9] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., 11 (1987), 623–632. doi: 10.1016/0362-546X(87)90077-0
    [10] O. Had${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }}$ić, A fixed point theorem in Menger spaces, Publ. Inst. Math. (Belgr.), 20 (1979), 107–112.
    [11] O. Had${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }}$ić, Z. Ovcin, Fixed point theorems in fuzzy metric and probabilistic metric spaces, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 11 (1994), 197–209.
    [12] J. Jachymski, On probabilistic $\phi$-contractions on Menger spaces, Nonlinear Anal., 73 (2010), 2199–2203. doi: 10.1016/j.na.2010.05.046
    [13] I. Kramosi, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [14] V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341–4349. doi: 10.1016/j.na.2008.09.020
    [15] K. Menger, Statistical metrics, P. Natl. Acad. Sci. USA, 28 (1942), 535–537.
    [16] S. M. S. M. Mosadegh, E. Movahednia, Stability of preserving lattice cubic functional equation in Menger probabilistic normed Riesz spaces, J. Fixed Point Theory Appl., 20 (2018), 34. doi: 10.1007/s11784-018-0513-x
    [17] B. Schweizer, A. Sklar, Probabilistic metric spaces, New York: North-Holland, 1983.
    [18] A. Turab, W. Sintunavarat, On a solution of the probabilistic predator-prey model approached by the fixed point methods, J. Fixed Point Theory Appl., 22 (2020), 34. doi: 10.1007/s11784-020-0773-0
    [19] S. Wang, G. Gu, Y. Cho, Coupled fixed point theorems in partially ordered Menger spaces, B. Malays. Math. Sci. Soc., 37 (2014), 531–542.
    [20] J. Wu, Some fixed-point theorems for mixed monotone operators in partially ordered probabilistic metric spaces, Fixed Point Theory Appl., 2014 (2014), 49. doi: 10.1186/1687-1812-2014-49
    [21] Z. Wu, C. Zhu, C. Yuan, Fixed point results for cyclic contractions in Menger PM-spaces and generalized Menger $PM$-spaces, RACSAM, 112 (2018), 449–462. doi: 10.1007/s13398-017-0393-8
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2148) PDF downloads(168) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog