In this paper, we introduce the notion of probabilistic $ (\omega, \gamma, \phi) $-contraction and establish the existence coupled coincidence points for mixed monotone operators subjected to the introduced contraction in the framework of ordered Menger $ PM $-spaces with Had${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }}$ić type $ t $-norm. As an application, a corresponding result in the setup of fuzzy metric space is also obtained.
Citation: Manish Jain, Deepak Jain, Choonkil Park, Dong Yun Shin. Probabilistic $ (\omega, \gamma, \phi) $-contractions and coupled coincidence point results[J]. AIMS Mathematics, 2021, 6(11): 11620-11630. doi: 10.3934/math.2021675
In this paper, we introduce the notion of probabilistic $ (\omega, \gamma, \phi) $-contraction and establish the existence coupled coincidence points for mixed monotone operators subjected to the introduced contraction in the framework of ordered Menger $ PM $-spaces with Had${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }}$ić type $ t $-norm. As an application, a corresponding result in the setup of fuzzy metric space is also obtained.
[1] | S. K. Bhandari, D. Gopal, P. Konar, Probabilistic $\alpha$-min Ćirić type contraction results using a control function, AIMS Mathematics, 5 (2020), 1186–1198. doi: 10.3934/math.2020082 |
[2] | T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393. doi: 10.1016/j.na.2005.10.017 |
[3] | S. Chauhan, S. Radenović, M. Imdad, C. Vetro, Some integral type fixed point theorems in non-Archmedean Menger $PM$-spaces with common property (E.A) and application of functional equations in dynamic programming, RACSAM, 108 (2014), 795–810. doi: 10.1007/s13398-013-0142-6 |
[4] | B. S. Choudhury, P. Das, A new contraction mapping principle in partially ordered fuzzy metric spaces, AFMI, 8 (2014), 889–901. doi: 10.12988/astp.2014.48114 |
[5] | L. Ćirić, Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces, Nonlinear Anal., 72 (2010), 2009–2018. doi: 10.1016/j.na.2009.10.001 |
[6] | L. Ćirić, R. P. Agarwal, B. Samet, Mixed monotone generalized contractions in partially ordered probabilistic metric spaces, Fixed Point Theory Appl., 2011 (2011), 56. doi: 10.1186/1687-1812-2011-56 |
[7] | L. Ćirić, D. Miheţ, R. Saadati, Monotone generalized contractions in partially ordered probabilistic metric spaces, Topology Appl., 156 (2009), 2838–2844. doi: 10.1016/j.topol.2009.08.029 |
[8] | D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in Menger $PM$-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955–967. |
[9] | D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., 11 (1987), 623–632. doi: 10.1016/0362-546X(87)90077-0 |
[10] | O. Had${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }}$ić, A fixed point theorem in Menger spaces, Publ. Inst. Math. (Belgr.), 20 (1979), 107–112. |
[11] | O. Had${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }}$ić, Z. Ovcin, Fixed point theorems in fuzzy metric and probabilistic metric spaces, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 11 (1994), 197–209. |
[12] | J. Jachymski, On probabilistic $\phi$-contractions on Menger spaces, Nonlinear Anal., 73 (2010), 2199–2203. doi: 10.1016/j.na.2010.05.046 |
[13] | I. Kramosi, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[14] | V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341–4349. doi: 10.1016/j.na.2008.09.020 |
[15] | K. Menger, Statistical metrics, P. Natl. Acad. Sci. USA, 28 (1942), 535–537. |
[16] | S. M. S. M. Mosadegh, E. Movahednia, Stability of preserving lattice cubic functional equation in Menger probabilistic normed Riesz spaces, J. Fixed Point Theory Appl., 20 (2018), 34. doi: 10.1007/s11784-018-0513-x |
[17] | B. Schweizer, A. Sklar, Probabilistic metric spaces, New York: North-Holland, 1983. |
[18] | A. Turab, W. Sintunavarat, On a solution of the probabilistic predator-prey model approached by the fixed point methods, J. Fixed Point Theory Appl., 22 (2020), 34. doi: 10.1007/s11784-020-0773-0 |
[19] | S. Wang, G. Gu, Y. Cho, Coupled fixed point theorems in partially ordered Menger spaces, B. Malays. Math. Sci. Soc., 37 (2014), 531–542. |
[20] | J. Wu, Some fixed-point theorems for mixed monotone operators in partially ordered probabilistic metric spaces, Fixed Point Theory Appl., 2014 (2014), 49. doi: 10.1186/1687-1812-2014-49 |
[21] | Z. Wu, C. Zhu, C. Yuan, Fixed point results for cyclic contractions in Menger PM-spaces and generalized Menger $PM$-spaces, RACSAM, 112 (2018), 449–462. doi: 10.1007/s13398-017-0393-8 |