Citation: Gülnur Şaffak Atalay. A new approach to special curved surface families according to modified orthogonal frame[J]. AIMS Mathematics, 2024, 9(8): 20662-20676. doi: 10.3934/math.20241004
[1] | G. E. Weatherburn, Differential geometry of three dimensions, Cambridge at the University Press, 1955. |
[2] | T. J. Willmore, An introduction to differential geometry, Delhi: Oxford University Press, 1959. |
[3] | D. J. Struik, Lectures on classical sifferential geometry, Second Edition, Massachusetts: Addison-Wesley Publishing Co., 1961. |
[4] | B. O'Neill, Elementary differential geometry, Burlington: Academic Press, 1966. https://dx.doi.org/10.1016/C2009-0-05241-6 |
[5] | M. M. Lipschutz, Theory and problems of differential geometry, New York, 1969. |
[6] | P. D. Carmo, Differential geometry of curves and surfaces: Revised and updated second edition, New Jersey: Prentice Hall, 1976. |
[7] | M. Şenatalar, Diferansiyel geometri (eğriler ve yüzeyler teorisi), İstanbul Devlet Mühendislik Ve Mimarlık Akademisi Yayınları, 1977. |
[8] | Y. Li, K. Eren, K. Ayvacı, S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Math., 8 (2022), 2226–2239. http://dx.doi.org/10.3934/math.2023115 doi: 10.3934/math.2023115 |
[9] | Y. Li, S. Senyurt, A. Ozduran, D. Canlı, The characterizations of parallel q-equidistant ruled surfaces, Symmetry, 14 (2022), 1879. http://dx.doi.org/10.3390/sym14091879 doi: 10.3390/sym14091879 |
[10] | K. Eren, O. Yıldız, M. Akyigit, Tubular surfaces associated with framed base curves in Euclidean 3-space, Math. Method. Appl. Sci., 45 (2022), 12110–12118. http://dx.doi.org/10.1002/mma.7590 doi: 10.1002/mma.7590 |
[11] | G. J. Wang, K. Tang, C. L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Des., 36 (2004), 447–459. http://dx.doi.org/10.1016/S0010-4485(03)00117-9 doi: 10.1016/S0010-4485(03)00117-9 |
[12] | E. Kasap, F. T Akyıldız, Surfaces with common geodesic in Minkowski 3-space, Appl. Math. Comput., 177 (2006), 260–270. http://dx.doi.org/10.1016/j.amc.2005.11.005 doi: 10.1016/j.amc.2005.11.005 |
[13] | C. Y. Li, R. H Wang, C. G. Zhu, Parametric representation of a surface pencil with a common line of curvature, Comput. Aided Des., 43 (2011), 1110–1117. http://dx.doi.org/10.1016/j.cad.2011.05.001 doi: 10.1016/j.cad.2011.05.001 |
[14] | G. Saffak, E. Kasap, Family of surface with a common null geodesic, Int. J. Phys. Sci., 4 (2009), 428–433. |
[15] | G. S. Atalay, E. Kasap, Surfaces family with common null asymptotic, Appl. Math. Comput., 260 (2015), 135–139. http://dx.doi.org/10.1016/j.amc.2015.03.067 doi: 10.1016/j.amc.2015.03.067 |
[16] | G. Ş. Atalay, E. Bayram, E. Kasap, Surface family with a common asymptotic curve in Minkowski 3-space, J. Sci. Arts, 43 (2018), 357–368. |
[17] | G. S. Atalay, E. Kasap, Surfaces family with common Smarandache asymptotic curve according to Bishop frame in Euclidean 3-space, Bol. Soc. Parana. Mat., 34 (2016), 1–16. https://dx.doi.org/10.5269/bspm.v34i1.25480 doi: 10.5269/bspm.v34i1.25480 |
[18] | G. S. Atalay, E. Kasap, Surfaces family with common Smarandache geodesic curve according to Bishop frame in Euclidean space, Math. Sci. Appl. E-Notes, 4 (2016), 164–174. |
[19] | G. Ş. Atalay, Surfaces family with a common Mannheim asymptotic curve, J. Appl. Math. Comput., 2 (2018), 143–154. |
[20] | G. Ş. Atalay, Surfaces family with a common Mannheim geodesic curve, J. Appl. Math. Comput., 2 (2018), 155–165. |
[21] | G. Ş. Atalay, K. H. Ayvacı, Surface family with a common Bertrand-B isoasymptotic curve, SDU J. Nat. Appl. Sci., 45 (2021), 262–268. |
[22] | G. Ş. Atalay, K. H. Ayvacı, Surface family with a common Mannheim B-geodesic curve, Balkan J. Geom. Appl., 26 (2021), 1–12. |
[23] | H. Murat, Özel eğrilik cizgili yüzey aileleri uzerine, Ondokuz Mayıs University, 2021. |
[24] | K. H. Ayvacı, G. Şaffak Atalay, Surface family with a common Mannheim B-pair asymptotic curve, Int. J. Geo. Meth. Mod. Phys., 20 (2023), 1–13, https://dx.doi.org/10.1142/S0219887823502298 doi: 10.1142/S0219887823502298 |
[25] | R. L. Bishop, There is more than one way to Frame a curve, American Math. Monthly, 82 (1975), 246–251. |
[26] | T. Sasai, The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations, Tohoku Math. J., 36 (1984), 17–24. |
[27] | B. Bukcu, M. K. Karacan, On the modified orthogonal frame with curvature and torsion in 3-space, Math Sci. Appl. E-Notes, 4 (2016), 184–188. https://dx.doi.org/10.36753/mathenot.421429 doi: 10.36753/mathenot.421429 |
[28] | M. S. Lone, E. S. Hasan, M. K. Karacan, B. Bukcu, On some curves with modified orthogonal frame in Euclidean 3-space, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), 1905–1916. https://dx.doi.org/10.1007/s40995-018-0661-2 doi: 10.1007/s40995-018-0661-2 |
[29] | M. S. Lone, E. S. Hasan, M. K. Karacan, B. Bukcu, Mannheim curves with modified orthogonal frame in Euclidean 3-space, Turkish J. Math., 43 (2019), 648–663. https://dx.doi.org/10.3906/mat-1807-177 doi: 10.3906/mat-1807-177 |
[30] | S. Baş, T. Körpınar, Modified roller coaster surface in space, Mathematics, 195 (2019). https://dx.doi.org/10.3390/math7020195 doi: 10.3390/math7020195 |
[31] | A. Z. Azak, Involute-Evolute curves according to modified orthogonal frame, J. Sci. Arts, 55 (2021), 385–394. https://dx.doi.org/10.46939/J.Sci.Arts-21.2-a06 doi: 10.46939/J.Sci.Arts-21.2-a06 |
[32] | M. Akyiğit, K. Eren, H. H. Kosal, Tubular surfaces with modified orthogonal frame in euclidean 3-Space, Honam Math. J., 43 (2021), 453–463. https://dx.doi.org/10.5831/HMJ.2021.43.3.453 doi: 10.5831/HMJ.2021.43.3.453 |
[33] | A. A. Almoneef, R. A. Abdel-Baky, Surface family pair with Bertrand pair as mutual geodesic curves in Euclidean 3-space E3, AIMS Math., 8 (2023), 20546–20560. |
[34] | S. H. Nazra, R. A. Abdel-Baky, A surface pencil with bertrand curves as joint curvature lines in euclidean Three-Space, Symmetry, 15 (2023), 1986. https://dx.doi.org/10.3390/sym15111986 doi: 10.3390/sym15111986 |
[35] | F. Mofarreh, R. A. Abdel-Baky, Surface pencil pair interpolating bertrand pair as common asymptotic curves in euclidean 3-Space, Mathematics, 11 (2023), 3495. https://dx.doi.org/10.3390/math11163495 doi: 10.3390/math11163495 |
[36] | S. Yaman, E. Kasap, Ruled surface family with common special curve, J. Geometry Phys., 195 (2024), 0393–0440. https://doi.org/10.1016/j.geomphys.2023.105033 doi: 10.1016/j.geomphys.2023.105033 |