Research article Special Issues

Geometry of tubular surfaces and their focal surfaces in Euclidean 3-space

  • Received: 29 January 2024 Revised: 21 March 2024 Accepted: 25 March 2024 Published: 01 April 2024
  • MSC : 53A05, 53B25

  • In this study, we examined the focal surfaces of tubular surfaces in Euclidean 3-space $ E^{3} $. We achieved some significant results for these surfaces in accordance with the modified orthogonal frame. Additionally, we proposed a few geometric invariants that illustrated the geometric characteristics of these surfaces, such as flat, minimal, Weingarten, and linear-Weingarten surfaces, using the traditional methods of differential geometry. Additionally, the asymptotic and geodesic curves of these surfaces have been researched. At last, we presented an example as an instance of use to validate our theoretical findings.

    Citation: M. Khalifa Saad, Nural Yüksel, Nurdan Oğraş, Fatemah Alghamdi, A. A. Abdel-Salam. Geometry of tubular surfaces and their focal surfaces in Euclidean 3-space[J]. AIMS Mathematics, 2024, 9(5): 12479-12493. doi: 10.3934/math.2024610

    Related Papers:

  • In this study, we examined the focal surfaces of tubular surfaces in Euclidean 3-space $ E^{3} $. We achieved some significant results for these surfaces in accordance with the modified orthogonal frame. Additionally, we proposed a few geometric invariants that illustrated the geometric characteristics of these surfaces, such as flat, minimal, Weingarten, and linear-Weingarten surfaces, using the traditional methods of differential geometry. Additionally, the asymptotic and geodesic curves of these surfaces have been researched. At last, we presented an example as an instance of use to validate our theoretical findings.



    加载中


    [1] H. Pottmann, H. Hagen, A. Divivier, Visualizing functions on a surface, J. Visual. Comput. Animat., 2 (1991), 52–58. http://dx.doi.org/10.1002/vis.4340020205 doi: 10.1002/vis.4340020205
    [2] H. Hagen, S. Hahmann, Generalized focal surfaces: A new method for surface interrogation, In: Proceedings Visualization'92, 1992, 70–76. http://dx.doi.org/10.1109/VISUAL.1992.235224
    [3] H. Hagen, S. Hahmann, T. Schreiber, Y. Nakajima, B. Wordenweber, P. Hollemann-Grundstedt, Surface interrogation algorithms, IEEE Comput. Graph., 12 (1992), 53–60. http://dx.doi.org/10.1109/38.156013 doi: 10.1109/38.156013
    [4] B. Özdemir, K. Arslan, On generalized focal surfaces in $E^3$, Rev. Bull. Calcutta Math. Soc., 16 (2008), 23–32.
    [5] G. Öztürk, K. Arslan, On focal curves in Euclidean n-space Rn, Novi. Sad. J. Math., 46 (2016), 35–44.
    [6] S. Honda, M. Takahashi, Evolutes and focal surfaces of framed immersions in the Euclidean space, P. Roy. Soc. Edinb. A, 150 (2020), 497–516. http://dx.doi.org/10.1017/prm.2018.84 doi: 10.1017/prm.2018.84
    [7] S. Yurttançıkmaz, Ö. Tarakçı, The relationship between focal surfaces and surfaces at a constant distance from the edge of regression on a surface, Adv. Math. Phys., 2015 (2015), 397126. http://dx.doi.org/10.1155/2015/397126 doi: 10.1155/2015/397126
    [8] S. Büyükkütük, İ. Kişi, G. Öztürk, Some characterizations of focal surfaces of a tubular surface in $E^{3}$, 2018. http://dx.doi.org/10.48550/arXiv.1810.05531
    [9] İ. Kişi, G. Öztürk, A new study on focal surface of a given surface, Turk. J. Sci., 5 (2020), 208–213.
    [10] T. Sasai, The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations, Tohoku Math. J., 36 (1984), 17–24. http://dx.doi.org/10.2748/tmj/1178228899 doi: 10.2748/tmj/1178228899
    [11] B. Bükçü, M. K. Karacan, On the modified orthogonal frame with curvature and torsion in 3-space, Math. Sci. Appl. E, 4 (2016), 184–188. http://dx.doi.org/10.36753/mathenot.421429 doi: 10.36753/mathenot.421429
    [12] M. Dede, Tubular surfaces in Galilean space, Math. Commun., 18 (2013), 209–217.
    [13] S. Gür, S. Şenyurt, M. Bektaş, Salkowski curves and their modified orthogonal frames in $E^{3}$, J. New Theor., 40 (2022), 12–26. http://dx.doi.org/10.53570/jnt.1140546 doi: 10.53570/jnt.1140546
    [14] M. S. Lone, H. Es, M. K. Karacan, B. Bükçü, On some curves with modified orthogonal frame in Euclidean 3-Space, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 1905–1916. http://dx.doi.org/10.1007/s40995-018-0661-2 doi: 10.1007/s40995-018-0661-2
    [15] B. Bükçü, M. K. Karacan, Spherical curves with modified orthogonal frame, J. New Result. Sci., 5 (2016), 60–68.
    [16] N. Yüksel, N. Oğraş, Canal surfaces with modified orthogonal frame in Minkowski 3-space, Acta Universitatis Apulensis, 70 (2022), 65–86. http://dx.doi.org/10.17114/j.aua.2022.70.07 doi: 10.17114/j.aua.2022.70.07
    [17] F. Doğan, Y. Yaylı, Tubulars with Darboux frame, Int. J. Contemp. Math. Sci., 7 (2012), 751–758.
    [18] F. Doğan, Y. Yaylı, On the curvatures of tubular surface with Bishop frame, Commun. Fac. Sci. Univ., 60 (2011), 59–69. http://dx.doi.org/10.1501/Commua1_0000000669 doi: 10.1501/Commua1_0000000669
    [19] N. Yüksel, Y. Tuncer, M. K. Karacan, Tabular surfaces with Bishop frame of Weingarten types in Euclidean 3-space, Acta Universitatis Apulensis, 27 (2011), 39–50.
    [20] Z. Xu, R. Feng, J. Sun, Analytic and algebraic properties of canal surfaces, J. Comput. Appl. Math., 195 (2006), 220–228. http://dx.doi.org/10.1016/j.cam.2005.08.002 doi: 10.1016/j.cam.2005.08.002
    [21] R. A. Abdel-Baky, M. Khalifa Saad, Singularities of non-developable ruled surface with space-like ruling, Symmetry, 14 (2022), 716. http://dx.doi.org/10.3390/sym14040716 doi: 10.3390/sym14040716
    [22] M. Peternell, H. Pottmann, Computing rational parametrizations of canal surfaces, J. Symb. Comput., 23 (1997), 255–266. http://dx.doi.org/10.1006/jsco.1996.0087 doi: 10.1006/jsco.1996.0087
    [23] H. S. Abdel-Aziz, M. Khalifa Saad, Weingarten timelike tube surfaces around a spacelike curve, Int. J. Math. Anal., 5 (2011), 1225-1236.
    [24] Y. H. Kim, H. Liu, J. Qian, Some characterizations of canal surfaces, B. Korean Math. Soc., 53 (2016), 461–477. http://dx.doi.org/10.4134/BKMS.2016.53.2.461 doi: 10.4134/BKMS.2016.53.2.461
    [25] R. López, Linear Weingarten surfaces in Euclidean and hyperbolic space, 2009. http://dx.doi.org/10.48550/arXiv.0906.3302
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(797) PDF downloads(81) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog