Research article

On geometry of focal surfaces due to B-Darboux and type-2 Bishop frames in Euclidean 3-space

  • Received: 19 December 2021 Revised: 16 April 2022 Accepted: 25 April 2022 Published: 20 May 2022
  • MSC : 53A05, 53A10

  • In Euclidean 3-space $ {\mathrm{E}}^3 $, a canonical subject is the focal surface of such a cliched space curve, which would be a two-dimensional corrosive with Lagrangian discontinuities. The tubular surfaces with respect to the B-Darboux frame and type-2 Bishop frame in $ {\mathrm{E}}^3 $ are given. These tubular surfaces' focal surfaces are then defined. For such types of surfaces, we acquire some results becoming Weingarten, flat, linear Weingarten conditions and we demonstrate that in $ {\mathrm{E}}^3 $, a tubular surface has no minimal focal surface. We also provide some examples of these types of surfaces.

    Citation: Ibrahim AL-Dayel, Emad Solouma, Meraj Khan. On geometry of focal surfaces due to B-Darboux and type-2 Bishop frames in Euclidean 3-space[J]. AIMS Mathematics, 2022, 7(7): 13454-13468. doi: 10.3934/math.2022744

    Related Papers:

  • In Euclidean 3-space $ {\mathrm{E}}^3 $, a canonical subject is the focal surface of such a cliched space curve, which would be a two-dimensional corrosive with Lagrangian discontinuities. The tubular surfaces with respect to the B-Darboux frame and type-2 Bishop frame in $ {\mathrm{E}}^3 $ are given. These tubular surfaces' focal surfaces are then defined. For such types of surfaces, we acquire some results becoming Weingarten, flat, linear Weingarten conditions and we demonstrate that in $ {\mathrm{E}}^3 $, a tubular surface has no minimal focal surface. We also provide some examples of these types of surfaces.



    加载中


    [1] L. R. Bishop, There is more than one way to frame a curve, Amer. Math. Mon., 82 (1975), 246–251. https://doi.org/10.1080/00029890.1975.11993807 doi: 10.1080/00029890.1975.11993807
    [2] J. L. M. Barbosa, A. G. Colares, Minimal surfaces in $R^3$, Springer, 1986.
    [3] E. M. Solouma, Investigation of non-lightlike tubular surfaces with Darboux frame in Minkowski 3-space, Commun. Math. Model. Appl., 4 (2016), 58–65.
    [4] G. Darboux, Leçons sur la théorie générale des surfaces, Paris: Gauthier-Villars, 1896.
    [5] M. P. Do Carmo, Differential geometry of curves and surfaces: Revised and updated second edition, Courier Dover Publications, 2016.
    [6] M. Dede, M. Ç. Aslan, C. Ekici, On a variational problem due to the $B$-Darboux frame in Euclidean 3-space, Math. Methods Appl. Sci., 44 (2021), 12630–2639. https://doi.org/10.1002/mma.7567 doi: 10.1002/mma.7567
    [7] G. H. Georgiev, M. D. Pavlov, Focal and generalized focal surfaces of parabolic cylinders, ARPN J. Eng. Appl. Sci., 13 (2018), 4458–4465.
    [8] S. Hu, Z. Wang, X. Tang, Tubular surfaces of center curves on spacelike surfaces in Lorentz-Minkowski 3-space, Math. Methods Appl. Sci., 42 (2019), 3136–3166. https://doi.org/10.1002/mma.5574 doi: 10.1002/mma.5574
    [9] G. Hu, H. Cao, J. Wu, G. Wei, Construction of developable surfaces using generalized $C$-Bézier bases with shape parameters, Comput. Appl. Math., 39 (2020), 157. https://doi.org/10.1007/s40314-020-01185-9 doi: 10.1007/s40314-020-01185-9
    [10] S. Kiziltuǧ, S. Kya, Ö. Tarakci, Tube surfaces with type-2 Bishop frame of Weingarten types in $E^3$, Int. J. Math. Anal., 7 (2013), 9–18. http://dx.doi.org/10.12988/ijma.2013.13002 doi: 10.12988/ijma.2013.13002
    [11] S. Liu, Z. Wang, Generalized focal surfaces of spacelike curves lying in lightlike surfaces, Math. Methods Appl. Sci., 44 (2020), 7501–7525. https://doi.org/10.1002/mma.6296 doi: 10.1002/mma.6296
    [12] H. Liu, J. Miao, Geometric invariants and focal surfaces of spacelike curves in de Sitter space from a caustic viewpoint, AIMS Math., 6 (2021), 3177–3204. https://doi.org/10.3934/math.2021192 doi: 10.3934/math.2021192
    [13] B. O'Neill, Elementary differential geometry, New York: Academic Press Inc., 1966.
    [14] G. Öztürk, K. Arslan, On focal curves in Euclidean $n$-space $\mathbb{R}^n$, Novi Sad J. Math., 46 (2016), 35–44.
    [15] J. Qian, J. Liu, X. Fu, S. D. Jung, Geometric characterizations of canal surfaces with Frenet center curves, AIMS Math., 6 (2021), 9476–9490. https://doi.org/10.3934/math.2021551 doi: 10.3934/math.2021551
    [16] E. M. Solouma, I. Al-Dayel, Harmonic evolute surface of tubular surfaces via B-Darboux frame in Euclidean 3-space, Adv. Math. Phys., 2021 (2021), 5269655. https://doi.org/10.1155/2021/5269655 doi: 10.1155/2021/5269655
    [17] Z. Wang, D. Pei, L. Chen, L. Kong, Q. Han, Singularities of focal surfaces of null Cartan curves in Minkowski 3-space, Abstr. Appl. Anal., 2021 (2021), 823809. https://doi.org/10.1155/2012/823809 doi: 10.1155/2012/823809
    [18] S. Yılmaz, M. Turgut, A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., 371 (2010), 764–776. https://doi.org/10.1016/j.jmaa.2010.06.012 doi: 10.1016/j.jmaa.2010.06.012
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1511) PDF downloads(64) Cited by(2)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog