Research article Special Issues

A new integral operational matrix with applications to multi-order fractional differential equations

  • Received: 11 March 2021 Accepted: 20 May 2021 Published: 09 June 2021
  • MSC : 65M99, 26A33, 35R11, 45K05

  • In this article, we propose a numerical method that is completely based on the operational matrices of fractional integral and derivative operators of fractional Legendre function vectors (FLFVs). The proposed method is independent of the choice of the suitable collocation points and expansion of the residual function as a series of orthogonal polynomials as required for Spectral collocation and Spectral tau methods. Consequently, the high efficient numerical results are obtained as compared to the other methods in the literature. The other novel aspect of our article is the development of the new integral and derivative operational matrices in Riemann-Liouville and Caputo senses respectively. The proposed method is computer-oriented and has the ability to reduce the fractional differential equations (FDEs) into a system of Sylvester types matrix equations that can be solved using MATLAB builtin function lyap(.). As an application of the proposed method, we solve multi-order FDEs with initial conditions. The numerical results obtained otherwise in the literature are also improved in our work.

    Citation: Imran Talib, Md. Nur Alam, Dumitru Baleanu, Danish Zaidi, Ammarah Marriyam. A new integral operational matrix with applications to multi-order fractional differential equations[J]. AIMS Mathematics, 2021, 6(8): 8742-8771. doi: 10.3934/math.2021508

    Related Papers:

  • In this article, we propose a numerical method that is completely based on the operational matrices of fractional integral and derivative operators of fractional Legendre function vectors (FLFVs). The proposed method is independent of the choice of the suitable collocation points and expansion of the residual function as a series of orthogonal polynomials as required for Spectral collocation and Spectral tau methods. Consequently, the high efficient numerical results are obtained as compared to the other methods in the literature. The other novel aspect of our article is the development of the new integral and derivative operational matrices in Riemann-Liouville and Caputo senses respectively. The proposed method is computer-oriented and has the ability to reduce the fractional differential equations (FDEs) into a system of Sylvester types matrix equations that can be solved using MATLAB builtin function lyap(.). As an application of the proposed method, we solve multi-order FDEs with initial conditions. The numerical results obtained otherwise in the literature are also improved in our work.



    加载中


    [1] E. Ahmed, A. Elgazzar, On fractional order differential equations model for non-local epidemics, Phys. A., 15 (2007), 607-614.
    [2] W. Chen, A speculative study of $\frac{2}{3}$-order fractional Laplacian modeling of turbulence: Some thoughts and conjectures, Chaos, 16 (2006), doi: 10.1063/1.2208452. doi: 10.1063/1.2208452
    [3] W. Chen, H. Sun, X. Zhang, D. Korosak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754-1758. doi: 10.1016/j.camwa.2009.08.020
    [4] M. A. Z. Raja, J. A. Khan, I. M. Qureshi, Solution of fractional order system of Bagley-Torvik equation using evolutionary computational Iintelligence, Math. Probl. Eng., (2011), doi: 10.1155/2011/675075.
    [5] M. Gülsu, Y. O${{\rm{\ddot z}}}$türk, A. Anapali, Numerical solution of the fractional Bagley-Torvik equation arising in fluid mechanics, Int. J. Comput. Math., (2015), doi: 10.1080/00207160.2015.1099633.
    [6] S. Yüzbaşi, Numerical solution of the Bagley-Torvik equation by the Bessel collocation method, Math. Meth. Appl. Sci., (2012), doi: 10.1002/mma.2588.
    [7] H. Sun, D. Chen, Y. Zhang, L. Chen, Understanding partial bed-load transport: Experiments and stochastic model analysis, J. Hydrol., 521 (2015), 196-204. doi: 10.1016/j.jhydrol.2014.11.064
    [8] H. Sun, W. Chen, Y. Chen, Variable-order fractional differential operators in anomalous diffusion modeling, Phys. A., 388 (2009), 4586-4592. doi: 10.1016/j.physa.2009.07.024
    [9] Y. Rossikhin, M. Shitikova, Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems, Acta Mech., 120 (1997), 109-125. doi: 10.1007/BF01174319
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, New York, NY, USA, Elsevier Science B.V., 2006.
    [11] R. El Attar, Special Functions and Orthogonal Polynomials, New York, Lulu Press, 2006.
    [12] I. Podlubny, Fractional Differential equations, New York, Academic Press, 1998.
    [13] A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326-1336. doi: 10.1016/j.camwa.2009.07.006
    [14] E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl., 62 (2011), 2364-2373. doi: 10.1016/j.camwa.2011.07.024
    [15] M. H. Atabakzadeh, M. H. Akrami, G. H. Erjaee, Chebyshev Operational Matrix Method for Solving Multi-order Fractional Ordinary Differential Equations, Appl. Math. Model., 37 (2013), 8903-8911. doi: 10.1016/j.apm.2013.04.019
    [16] E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model., 35 (2011), 5662-5672. doi: 10.1016/j.apm.2011.05.011
    [17] H. Zhang, X. Jiang, F. Zeng, G. Em Karniadakis, A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations, J. Comput. Phys., 405 (2020), 109141. doi: 10.1016/j.jcp.2019.109141
    [18] H. Zhang, X. Jiang, X. Yang, A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem, Appl. Math. Comput., 320 (2018), 302-318.
    [19] S. Kazem, S. Abbasbandy, S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., 37 (2013), 5498-5510. doi: 10.1016/j.apm.2012.10.026
    [20] A. H. Bhrawya, A. S. Alofi, The operational matrix of fractional integration for shifted Chebyshev polynomials, Appl. Math. Lett., 26 (2013), 25-31. doi: 10.1016/j.aml.2012.01.027
    [21] W. Han, Y. M. Chen, D. Y. Liu, X. L. Li, D. Boutat, Numerical solution for a class of multi-order fractional differential equations with error correction and convergence analysis, Adv. Difference Equ., 2018 (2018). Available from: https://doi.org/10.1186/s13662-018-1702-z.
    [22] S. Kazem, An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations, Appl. Math. Model., 37 (2013), 1126-1136. doi: 10.1016/j.apm.2012.03.033
    [23] S. Z. Rida, A. M. Yousef, On the fractional order Rodrigues formula for the Legendre polynomials, Adv. Appl. Math. Sci., 10 (2011), 509-518.
    [24] R. A. Khan, H. Khalil, New method based on legendre polynomials for solution of system of fractional order partial differential equations, Int. J. Comput. Math., 91 (2014), 2554-2567. doi: 10.1080/00207160.2014.880781
    [25] I. Talib, C. Tunc, Z. A. Noor, operational matrices of orthogonal Legendre polynomials and their operational, J. Taibah Univ. Sci., 13 (2019), 377-389. doi: 10.1080/16583655.2019.1580662
    [26] I. Talib, F. B. Belgacem, N. A. Asif, H. Khalil, On mixed derivatives type high dimensional multi-term fractional partial differential equations approximate solutions, AIP Conference Proceedings, 1798 (2017). Available from: https://doi.org/10.1063/1.4972616.
    [27] R. Garrappa, E. Kaslik, M. Popolizio, Evaluation of fractional integrals and derivatives of elementary functions: Overview and tutorial, Mathematics, 407 (2019), 1-21.
    [28] K. Diethelm, N. J. Ford, Numerical solution of the Bagley-Torvik equation, BIT., 42 (2002), 490-507.
    [29] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 674-684. doi: 10.1016/j.cnsns.2007.09.014
    [30] Z. Odibat, S. Momani, An algorithm for the numerical solution of differential equations of fractional order, J. Appl. Math. Inform., 26 (2008), 15-27.
    [31] Z. Odibat, S. Momani, Analytical comparison between the homotopy perturbation method and variational iteration method for differentialequations of fractional order, Int. J. Mod. Phys., 22 (2008), 4041-4058. doi: 10.1142/S0217979208048851
    [32] A. Bolandtalat, E. Babolian, H. Jafari, Numerical solutions of multi-order fractional differential equations by Boubaker polynomials, Open Phys., 14 (2016), 226-230. doi: 10.1515/phys-2016-0028
    [33] D. Zeidan, S. Govekar, M. Pandey, Discontinuity wave interactions in generalized magnetogasdynamics, Acta Astronautica, 180 (2021), 110-114. doi: 10.1016/j.actaastro.2020.12.025
    [34] F. Sultana, D. Singh, R. K. Pandey, D. Zeidan, Numerical schemes for a class of tempered fractional integro-differential equations, Appl. Numer. Math., 157 (2020), 110-134. doi: 10.1016/j.apnum.2020.05.026
    [35] D. Zeidan, B. Bira, Weak shock waves and its interaction with characteristic shocks in polyatomic gas, Math. Meth. Appl. Sci., 42 (2019), 4679-4687. doi: 10.1002/mma.5675
    [36] D. Zeidan, C. K. Chau, T. Tzer-Lu, On the characteristic Adomian decomposition method for the Riemann problem, Math. Meth. Appl. Sci., (2019). Available from: https://doi.org/10.1002/mma.5798.
    [37] E. Goncalves, D. Zeidan, Simulation of compressible two-phase flows using a void ratio transport equation, Commun. Comput. Phys., 24 (2018), 167-203.
    [38] H. Mandal, B. Bira, D. Zeidan, Power series solution of time-fractional Majda-Biello system using lie group analysis, Proceedings of International Conference on Fractional Differentiation and its Applications (ICFDA), 2018. Available from: https://doi.org/10.2139/ssrn.3284751.
    [39] E. Goncalves, D. Zeidan, Numerical study of turbulent cavitating flows in thermal regime, Int. J. Numer. Meth. Fl., 27 (2017), 1487-1503.
    [40] S. Kuila, T. Raja Sekhar, D. Zeidan, On the Riemann problem simulation for the Drift-Flux equations of two-Phase flows, Int. J. Comput. Methods, 13 (2016), 1650009. doi: 10.1142/S0219876216500092
    [41] X. Zheng, H. Wang, An error estimate of a numerical approximation to a Hidden-Memory variable-order space-time fractional Diffusion equation, SIAM J. Numer. Anal., 58 (2020), 2492-2514. doi: 10.1137/20M132420X
    [42] H. Wang, X. Zheng, Wellposedness and regularity of the variable-order time-fractional diffusion equations, J. Math. Anal. Appl., 475 (2019), 1778-1802. doi: 10.1016/j.jmaa.2019.03.052
    [43] X. Zheng, H. Wang, Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, IMA J. Numer. Anal., 41 (2021), 1522-1545. doi: 10.1093/imanum/draa013
    [44] X. Zheng, H. Wang, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes, SIAM J. Numer. Anal., 58 (2020), 330-352. doi: 10.1137/19M1245621
    [45] K. Kumar, R. K. Pandey, S. Sharma, Comparative study of three numerical schemes for fractional integro-differential equations, J. Comput. Appl. Math., 315 (2017), 287-302. doi: 10.1016/j.cam.2016.11.013
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3014) PDF downloads(247) Cited by(5)

Article outline

Figures and Tables

Figures(23)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog