Research article

On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems

  • Received: 18 January 2024 Revised: 23 March 2024 Accepted: 02 April 2024 Published: 18 April 2024
  • MSC : 26A33, 34A08, 34K37

  • The main aim of this paper is to study the Cauchy problem for nonlinear differential equations of fractional order containing the weighted Riemann-Liouville fractional derivative of a function with respect to another function. The equivalence of this problem and a nonlinear Volterra-type integral equation of the second kind have been presented. In addition, the existence and uniqueness of the solution to the considered Cauchy problem are proved using Banach's fixed point theorem and the method of successive approximations. Finally, we obtain a new estimate of the weighted Riemann-Liouville fractional derivative of a function with respect to functions at their extreme points. With the assistance of the estimate obtained, we develop the comparison theorems of fractional differential inequalities, strict as well as nonstrict, involving weighted Riemann-Liouville differential operators of a function with respect to functions of order $ \delta $, $ 0 < \delta < 1 $.

    Citation: Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad. On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems[J]. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686

    Related Papers:

  • The main aim of this paper is to study the Cauchy problem for nonlinear differential equations of fractional order containing the weighted Riemann-Liouville fractional derivative of a function with respect to another function. The equivalence of this problem and a nonlinear Volterra-type integral equation of the second kind have been presented. In addition, the existence and uniqueness of the solution to the considered Cauchy problem are proved using Banach's fixed point theorem and the method of successive approximations. Finally, we obtain a new estimate of the weighted Riemann-Liouville fractional derivative of a function with respect to functions at their extreme points. With the assistance of the estimate obtained, we develop the comparison theorems of fractional differential inequalities, strict as well as nonstrict, involving weighted Riemann-Liouville differential operators of a function with respect to functions of order $ \delta $, $ 0 < \delta < 1 $.



    加载中


    [1] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6
    [2] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [3] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
    [4] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, London: Imperial College Press, 2010. https://doi.org/10.1142/9781848163300
    [5] C. Kou, J. Liu, Y. Ye, Existence and uniqueness of solutions for the Cauchy-type problems of fractional differential equations, Discrete Dyn. Nat. Soc., 2010 (2010), 142175. https://doi.org/10.1155/2010/142175 doi: 10.1155/2010/142175
    [6] A. Y. A. Salamooni, D. D. Pawar, Existence and uniqueness of generalised fractional Cauchy-type problem, Univers. J. Math. Appl., 3 (2020), 121–128. https://doi.org/10.32323/ujma.756304 doi: 10.32323/ujma.756304
    [7] Y. Adjabi, F. Jarad, D. Baleanu, T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661–681.
    [8] K. Diethelm, A. D. Freed, On the solution of nonlinear fractional differential equations used in the modeling of viscoplasticity, In: Scientific computing in chemical engineering II, Berlin, Heidelberg: Springer, 1999. https://doi.org/10.1007/978-3-642-60185-9_24
    [9] W. G. Gl$\ddot{o}$ckle, T. F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68 (1995), 46–53. https://doi.org/10.1016/S0006-3495(95)80157-8 doi: 10.1016/S0006-3495(95)80157-8
    [10] M. Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [11] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam, Boston: Elsevier, 2006.
    [12] V. Kiryakova, Generalized fractional calculus and applications, New York: Wiley, 1993.
    [13] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
    [14] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. https://doi.org/10.22436/jnsa.010.05.27 doi: 10.22436/jnsa.010.05.27
    [15] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discret. Contin. Dyn. Syst. S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [16] O. P. Agarwal, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. Appl. Anal., 15 (2012), 700–711. https://doi.org/10.2478/s13540-012-0047-7 doi: 10.2478/s13540-012-0047-7
    [17] O. P. Agrawal, Generalized multi parameters fractional variational calculus, Int. J. Differ. Equ., 2012 (2012), 521750. https://doi.org/10.1155/2012/521750 doi: 10.1155/2012/521750
    [18] F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractioinal operators on a function with respact to another function, Fractals, 28 (2020), 2040011. https://doi.org/10.1142/S0218348X20400113 doi: 10.1142/S0218348X20400113
    [19] A. Fernandez, H. M. Fahad, Weighted fractional calculus: A general class of operators, Fractal Fract., 6 (2022), 208. https://doi.org/10.3390/fractalfract6040208 doi: 10.3390/fractalfract6040208
    [20] M. Al-Refai, A. M. Jarrah, Fundamental results on weighted Caputo-Fabrizio fractional derivative, Chaos Soliton Fract., 126 (2019), 7–11. https://doi.org/10.1016/j.chaos.2019.05.035 doi: 10.1016/j.chaos.2019.05.035
    [21] M. Al-Refai, On weighted Atangana-Baleanu fractional operators, Adv. Differ. Equ., 2020 (2020), 3. https://doi.org/10.1186/s13662-019-2471-z doi: 10.1186/s13662-019-2471-z
    [22] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos Soliton Fract., 141 (2020), 110341. https://doi.org/10.1016/j.chaos.2020.110341 doi: 10.1016/j.chaos.2020.110341
    [23] M. A. Bayrak, A. Demir, E. Ozbilge, On solution of fractional partial differential equation by the weighted fractional operator, Alex. Eng. J., 59 (2020), 4805–4819. https://doi.org/10.1016/j.aej.2020.08.044 doi: 10.1016/j.aej.2020.08.044
    [24] J. G. Liu, X. J. Yang, Y. Y. Feng, L. L. Geng, Fundamental results to the weighted Caputo-type differential operator, Appl. Math. Lett., 121 (2021), 107421. https://doi.org/10.1016/j.aml.2021.107421 doi: 10.1016/j.aml.2021.107421
    [25] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [26] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [27] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. Theor., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042
    [28] V. Lakshmiknantham, A. S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal., 11 (2007), 395–402.
    [29] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of fractional dynamic systems, Cambridge: Cambridge Scientific Publishers, 2009.
    [30] J. Vasundhara Devi, F. A. Mc Rae, Z. Drici, Variational Lyapunov method for fractional differential equations, Comput. Math. Appl., 64 (2012), 2982–2989. https://doi.org/10.1016/j.camwa.2012.01.070 doi: 10.1016/j.camwa.2012.01.070
    [31] V. Lakshmikantham, S. Leela, Differential and integral inequalities, New York: Academic Press, 1969.
    [32] B. Fei, Y. Zhu, Comparison theorems for generalized Caputo fractional differential equations, Nonlinear Anal. Differ. Equ., 10 (2022), 37–49. https://doi.org/10.12988/nade.2022.91143 doi: 10.12988/nade.2022.91143
    [33] J. V. C. Sousa, E. C. Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(689) PDF downloads(34) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog