Research article

Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials

  • Received: 11 April 2022 Revised: 11 June 2022 Accepted: 16 June 2022 Published: 23 June 2022
  • MSC : 65N35, 34A08

  • The fractional advection-reaction-diffusion equation plays a key role in describing the processes of multiple species transported by a fluid. Different numerical methods have been proposed for the case of fixed-order derivatives, while there are no such methods for the generalization of variable-order cases. In this paper, a numerical treatment is given to solve a variable-order model with time fractional derivative defined in the Atangana-Baleanu-Caputo sense. By using shifted Gegenbauer cardinal function, this approach is based on the application of spectral collocation method and operator matrices. Then the desired problem is transformed into solving a nonlinear system, which can greatly simplifies the solution process. Numerical experiments are presented to illustrate the effectiveness and accuracy of the proposed method.

    Citation: Yumei Chen, Jiajie Zhang, Chao Pan. Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials[J]. AIMS Mathematics, 2022, 7(8): 15612-15632. doi: 10.3934/math.2022855

    Related Papers:

  • The fractional advection-reaction-diffusion equation plays a key role in describing the processes of multiple species transported by a fluid. Different numerical methods have been proposed for the case of fixed-order derivatives, while there are no such methods for the generalization of variable-order cases. In this paper, a numerical treatment is given to solve a variable-order model with time fractional derivative defined in the Atangana-Baleanu-Caputo sense. By using shifted Gegenbauer cardinal function, this approach is based on the application of spectral collocation method and operator matrices. Then the desired problem is transformed into solving a nonlinear system, which can greatly simplifies the solution process. Numerical experiments are presented to illustrate the effectiveness and accuracy of the proposed method.



    加载中


    [1] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [2] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [3] X. J. Yang, H. M. Srivastava, J. A. Tenreiro Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753–756. https://doi.org/10.2298/TSCI151224222Y doi: 10.2298/TSCI151224222Y
    [4] S. T. Sutar, K. D. Kucche, On nonlinear hybrid fractional diferential equations with Atangana-Baleanu-Caputo derivative, Chaos Soliton. Fract., 143 (2021), 110557. https://doi.org/10.1016/j.chaos.2020.110557 doi: 10.1016/j.chaos.2020.110557
    [5] X. M. Gu, H. W. Sun, Y. L. Zhao, X. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
    [6] M. Hassouna, E. H. El Kinani, A. Ouhadan, Global existence and uniqueness of solution of Atangana-Baleanu-Caputo fractional differential equation with nonlinear term and approximate solutions, Int. J. Differ. Equations, 2021 (2021), 5675789. https://doi.org/10.1155/2021/5675789 doi: 10.1155/2021/5675789
    [7] J. Gómez-Aguilar, R. Escobar-Jiménez, M. López-López, V. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, J. Electromagn. Waves Appl., 30 (2016), 1937–1952. https://doi.org/10.1080/09205071.2016.1225521 doi: 10.1080/09205071.2016.1225521
    [8] S. Ullah, M. A. Khan, M. Farooq, Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative, Eur. Phys. J. Plus, 133 (2018), 313. https://doi.org/10.1140/epjp/i2018-12120-1 doi: 10.1140/epjp/i2018-12120-1
    [9] O. J. Peter, A. S. Shaikh, M. O. Ibrahim, K. S. Nisar, D. Baleanu, I. Khan, et al., Analysis and dynamics of fractional order mathematical model of covid-19 in Nigeria using Atangana-Baleanu operator, Comput. Mater. Con., 66 (2020), 1823–1848. http://dx.doi.org/10.32604/cmc.2020.012314 doi: 10.32604/cmc.2020.012314
    [10] C. F. Lorenzo, T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57–98. https://doi.org/10.1023/A:1016586905654 doi: 10.1023/A:1016586905654
    [11] H. Sun, W. Chen, H. Wei, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), 185. https://doi.org/10.1140/epjst/e2011-01390-6 doi: 10.1140/epjst/e2011-01390-6
    [12] M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy, D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Rom. Rep. Phys., 67 (2015), 773–791.
    [13] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods in fluid dynamics, Springer, Berlin, 1987.
    [14] J. Solís-Pérez, J. Gómez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos Soliton. Fract., 114 (2018), 175–185. https://doi.org/10.1016/j.chaos.2018.06.032 doi: 10.1016/j.chaos.2018.06.032
    [15] X. Li, Y. Gao, B. Wu, Approximate solutions of Atangana-Baleanu variable order fractional problems, AIMS Math., 5 (2020), 2285–2294. https://doi.org/10.3934/math.2020151 doi: 10.3934/math.2020151
    [16] M. H. Heydari, Z. Avazzadeh, A. Atangana, Shifted Jacobi polynomials for nonlinear singular variable-order time fractional Emden-Fowler equation generated by derivative with non-singular kernel, Adv. Differ. Equations, 2021 (2021), 188. https://doi.org/10.1186/s13662-021-03349-1 doi: 10.1186/s13662-021-03349-1
    [17] A. H. Bhrawy, M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80 (2015), 101–116. https://doi.org/10.1007/s11071-014-1854-7 doi: 10.1007/s11071-014-1854-7
    [18] T. El-Gindy, H. Ahmed, M. Melad, Shifted Gegenbauer operational matrix and its applications for solving fractional differential equations, J. Egypt. Math. Soc., 26 (2018), 72–90. https://doi.org/10.21608/JOMES.2018.9463 doi: 10.21608/JOMES.2018.9463
    [19] M. Usman, M. Hamid, T. Zubair, R. U. Haq, W. Wang, M. Liu, Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials, Appl. Math. Comput., 372 (2020), 124985. https://doi.org/10.1016/j.amc.2019.124985 doi: 10.1016/j.amc.2019.124985
    [20] F. Soufivand, F. Soltanian, K. Mamehrashi, An operational matrix method based on the Gegenbauer polynomials for solving a class of fractional optimal control problems, Int. J. Industrial Electron. Control Optim., 4 (2021), 475–484. https://doi.org/10.22111/IECO.2021.39546.1371 doi: 10.22111/IECO.2021.39546.1371
    [21] M. Heydari, A. Atangana, A cardinal approach for nonlinear variable-order time fractional schr$\ddot{o}$dinger equation defined by Atangana-Baleanu-Caputo derivative, Chaos Soliton. Fract., 128 (2019), 339–348. https://doi.org/10.1016/j.chaos.2019.08.009 doi: 10.1016/j.chaos.2019.08.009
    [22] Y. V. Mukhartova, M. A. Davydova, N. F. Elansky, O. V. Postylyakov, S. A. Zakharova, A. N. Borovski, On application of nonlinear reaction-diffusion-advection models to simulation of transport of chemically-active impurities, Remote Sensing Technologies and Applications in Urban Environments IV, 11157 (2019), 180–187. https://doi.org/10.1117/12.2535489 doi: 10.1117/12.2535489
    [23] F. Heße, F. A. Radu, M. Thullner, S. Attinger, Upscaling of the advection-diffusion-reaction equation with Monod reaction, Adv. Water Resour., 32 (2009), 1336–1351. https://doi.org/10.1016/j.advwatres.2009.05.009 doi: 10.1016/j.advwatres.2009.05.009
    [24] A. Hamdi, Identification of point sources in two-dimensional advection-diffusion-reaction equation: Application to pollution sources in a river. Stationary case, Inverse Probl. Sci. Eng., 15 (2007), 855–870. https://doi.org/10.1080/17415970601162198 doi: 10.1080/17415970601162198
    [25] A. Rubio, A. Zalts, C. El Hasi, Numerical solution of the advection-reaction-diffusion equation at different scales, Environ. Modell. Softw., 23 (2008), 90–95. https://doi.org/10.1016/j.envsoft.2007.05.009 doi: 10.1016/j.envsoft.2007.05.009
    [26] K. Issa, B. M. Yisa, J. Biazar, Numerical solution of space fractional diffusion equation using shifted Gegenbauer polynomials, Comput. Methods Differ. Equations, 10 (2022), 431–444. https://dx.doi.org/10.22034/cmde.2020.42106.1818 doi: 10.22034/cmde.2020.42106.1818
    [27] U. Ali, A. Iqbal, M. Sohail, F. A. Abdullah, Z. Khan, Compact implicit difference approximation for time-fractional diffusion-wave equation, Alex. Eng. J., 61 (2022), 4119–4126. https://doi.org/10.1016/j.aej.2021.09.005 doi: 10.1016/j.aej.2021.09.005
    [28] M. A. Zaky, S. S. Ezz-Eldien, E. H. Doha, J. A. Tenreiro Machado, A. H. Bhrawy, An efficient operational matrix technique for multidimensional variable-Order time fractional diffusion equations, ASME J. Comput. Nonlinear Dyn., 11 (2016), 061002. https://doi.org/10.1115/1.4033723 doi: 10.1115/1.4033723
    [29] M. M. Izadkhah, J. Saberi-Nadjafi, Gegenbauer spectral method for time-fractional convection-difffusion equations with variable coefficients, Math. Methods Appl. Sci., 38 (2015), 3183–3194. https://doi.org/10.1002/mma.3289 doi: 10.1002/mma.3289
    [30] M. H. Heydari, A. Atangana, Z. Avazzadeh, M. R. Mahmoudi, An operational matrix method for nonlinear variable-order time fractional reaction-diffusion equation involving Mittag-Leffler kernel, Eur. Phys. J. Plus, 135 (2020), 237. https://doi.org/10.1140/epjp/s13360-020-00158-5 doi: 10.1140/epjp/s13360-020-00158-5
    [31] P. Pandey, S. Kumar, J. G$\acute{o}$mez-Aguilar, Numerical solution of the time fractional reaction-advection-diffusion equation in porous media, J. Appl. Comput. Mech., 8 (2022), 84–96. https://doi.org/10.22055/JACM.2019.30946.1796 doi: 10.22055/JACM.2019.30946.1796
    [32] S. Kumar, D. Zeidan, An efficient Mittag-Leffler kernel approach for time-fractional advection-reaction-diffusion equation, Appl. Numer. Math., 170 (2021), 190–207. https://doi.org/10.1016/j.apnum.2021.07.025 doi: 10.1016/j.apnum.2021.07.025
    [33] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [34] M. Hosseininia, M. H. Heydari, Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2d reaction-diffusion equation involving Mittag-Leffler non-singular kernel, Chaos Soliton. Fract., 127 (2019), 400–407. https://doi.org/10.1016/j.chaos.2019.07.017 doi: 10.1016/j.chaos.2019.07.017
    [35] F. R. Lin, H. Qu, A Runge-Kutta Gegenbauer spectral method for nonlinear fractional differential equations with Riesz fractional derivatives, Int. J. Comput. Math., 96 (2018), 417–435. https://doi.org/10.1080/00207160.2018.1487059 doi: 10.1080/00207160.2018.1487059
    [36] H. Tajadodi, A numerical approach of fractional advection-diffusion equation with Atangana-Baleanu derivative, Chaos Soliton. Fract., 130 (2020), 109527. https://doi.org/10.1016/j.chaos.2019.109527 doi: 10.1016/j.chaos.2019.109527
    [37] S. Yadav, R. K. Pandey, Numerical approximation of fractional Burgers equation with Atangana-Baleanu derivative in Caputo sense, Chaos Soliton. Fract., 133 (2020), 109630. https://doi.org/10.1016/j.chaos.2020.109630 doi: 10.1016/j.chaos.2020.109630
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1284) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog