The fractional advection-reaction-diffusion equation plays a key role in describing the processes of multiple species transported by a fluid. Different numerical methods have been proposed for the case of fixed-order derivatives, while there are no such methods for the generalization of variable-order cases. In this paper, a numerical treatment is given to solve a variable-order model with time fractional derivative defined in the Atangana-Baleanu-Caputo sense. By using shifted Gegenbauer cardinal function, this approach is based on the application of spectral collocation method and operator matrices. Then the desired problem is transformed into solving a nonlinear system, which can greatly simplifies the solution process. Numerical experiments are presented to illustrate the effectiveness and accuracy of the proposed method.
Citation: Yumei Chen, Jiajie Zhang, Chao Pan. Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials[J]. AIMS Mathematics, 2022, 7(8): 15612-15632. doi: 10.3934/math.2022855
The fractional advection-reaction-diffusion equation plays a key role in describing the processes of multiple species transported by a fluid. Different numerical methods have been proposed for the case of fixed-order derivatives, while there are no such methods for the generalization of variable-order cases. In this paper, a numerical treatment is given to solve a variable-order model with time fractional derivative defined in the Atangana-Baleanu-Caputo sense. By using shifted Gegenbauer cardinal function, this approach is based on the application of spectral collocation method and operator matrices. Then the desired problem is transformed into solving a nonlinear system, which can greatly simplifies the solution process. Numerical experiments are presented to illustrate the effectiveness and accuracy of the proposed method.
[1] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[2] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[3] | X. J. Yang, H. M. Srivastava, J. A. Tenreiro Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753–756. https://doi.org/10.2298/TSCI151224222Y doi: 10.2298/TSCI151224222Y |
[4] | S. T. Sutar, K. D. Kucche, On nonlinear hybrid fractional diferential equations with Atangana-Baleanu-Caputo derivative, Chaos Soliton. Fract., 143 (2021), 110557. https://doi.org/10.1016/j.chaos.2020.110557 doi: 10.1016/j.chaos.2020.110557 |
[5] | X. M. Gu, H. W. Sun, Y. L. Zhao, X. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270 |
[6] | M. Hassouna, E. H. El Kinani, A. Ouhadan, Global existence and uniqueness of solution of Atangana-Baleanu-Caputo fractional differential equation with nonlinear term and approximate solutions, Int. J. Differ. Equations, 2021 (2021), 5675789. https://doi.org/10.1155/2021/5675789 doi: 10.1155/2021/5675789 |
[7] | J. Gómez-Aguilar, R. Escobar-Jiménez, M. López-López, V. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, J. Electromagn. Waves Appl., 30 (2016), 1937–1952. https://doi.org/10.1080/09205071.2016.1225521 doi: 10.1080/09205071.2016.1225521 |
[8] | S. Ullah, M. A. Khan, M. Farooq, Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative, Eur. Phys. J. Plus, 133 (2018), 313. https://doi.org/10.1140/epjp/i2018-12120-1 doi: 10.1140/epjp/i2018-12120-1 |
[9] | O. J. Peter, A. S. Shaikh, M. O. Ibrahim, K. S. Nisar, D. Baleanu, I. Khan, et al., Analysis and dynamics of fractional order mathematical model of covid-19 in Nigeria using Atangana-Baleanu operator, Comput. Mater. Con., 66 (2020), 1823–1848. http://dx.doi.org/10.32604/cmc.2020.012314 doi: 10.32604/cmc.2020.012314 |
[10] | C. F. Lorenzo, T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57–98. https://doi.org/10.1023/A:1016586905654 doi: 10.1023/A:1016586905654 |
[11] | H. Sun, W. Chen, H. Wei, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), 185. https://doi.org/10.1140/epjst/e2011-01390-6 doi: 10.1140/epjst/e2011-01390-6 |
[12] | M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy, D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Rom. Rep. Phys., 67 (2015), 773–791. |
[13] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods in fluid dynamics, Springer, Berlin, 1987. |
[14] | J. Solís-Pérez, J. Gómez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos Soliton. Fract., 114 (2018), 175–185. https://doi.org/10.1016/j.chaos.2018.06.032 doi: 10.1016/j.chaos.2018.06.032 |
[15] | X. Li, Y. Gao, B. Wu, Approximate solutions of Atangana-Baleanu variable order fractional problems, AIMS Math., 5 (2020), 2285–2294. https://doi.org/10.3934/math.2020151 doi: 10.3934/math.2020151 |
[16] | M. H. Heydari, Z. Avazzadeh, A. Atangana, Shifted Jacobi polynomials for nonlinear singular variable-order time fractional Emden-Fowler equation generated by derivative with non-singular kernel, Adv. Differ. Equations, 2021 (2021), 188. https://doi.org/10.1186/s13662-021-03349-1 doi: 10.1186/s13662-021-03349-1 |
[17] | A. H. Bhrawy, M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80 (2015), 101–116. https://doi.org/10.1007/s11071-014-1854-7 doi: 10.1007/s11071-014-1854-7 |
[18] | T. El-Gindy, H. Ahmed, M. Melad, Shifted Gegenbauer operational matrix and its applications for solving fractional differential equations, J. Egypt. Math. Soc., 26 (2018), 72–90. https://doi.org/10.21608/JOMES.2018.9463 doi: 10.21608/JOMES.2018.9463 |
[19] | M. Usman, M. Hamid, T. Zubair, R. U. Haq, W. Wang, M. Liu, Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials, Appl. Math. Comput., 372 (2020), 124985. https://doi.org/10.1016/j.amc.2019.124985 doi: 10.1016/j.amc.2019.124985 |
[20] | F. Soufivand, F. Soltanian, K. Mamehrashi, An operational matrix method based on the Gegenbauer polynomials for solving a class of fractional optimal control problems, Int. J. Industrial Electron. Control Optim., 4 (2021), 475–484. https://doi.org/10.22111/IECO.2021.39546.1371 doi: 10.22111/IECO.2021.39546.1371 |
[21] | M. Heydari, A. Atangana, A cardinal approach for nonlinear variable-order time fractional schr$\ddot{o}$dinger equation defined by Atangana-Baleanu-Caputo derivative, Chaos Soliton. Fract., 128 (2019), 339–348. https://doi.org/10.1016/j.chaos.2019.08.009 doi: 10.1016/j.chaos.2019.08.009 |
[22] | Y. V. Mukhartova, M. A. Davydova, N. F. Elansky, O. V. Postylyakov, S. A. Zakharova, A. N. Borovski, On application of nonlinear reaction-diffusion-advection models to simulation of transport of chemically-active impurities, Remote Sensing Technologies and Applications in Urban Environments IV, 11157 (2019), 180–187. https://doi.org/10.1117/12.2535489 doi: 10.1117/12.2535489 |
[23] | F. Heße, F. A. Radu, M. Thullner, S. Attinger, Upscaling of the advection-diffusion-reaction equation with Monod reaction, Adv. Water Resour., 32 (2009), 1336–1351. https://doi.org/10.1016/j.advwatres.2009.05.009 doi: 10.1016/j.advwatres.2009.05.009 |
[24] | A. Hamdi, Identification of point sources in two-dimensional advection-diffusion-reaction equation: Application to pollution sources in a river. Stationary case, Inverse Probl. Sci. Eng., 15 (2007), 855–870. https://doi.org/10.1080/17415970601162198 doi: 10.1080/17415970601162198 |
[25] | A. Rubio, A. Zalts, C. El Hasi, Numerical solution of the advection-reaction-diffusion equation at different scales, Environ. Modell. Softw., 23 (2008), 90–95. https://doi.org/10.1016/j.envsoft.2007.05.009 doi: 10.1016/j.envsoft.2007.05.009 |
[26] | K. Issa, B. M. Yisa, J. Biazar, Numerical solution of space fractional diffusion equation using shifted Gegenbauer polynomials, Comput. Methods Differ. Equations, 10 (2022), 431–444. https://dx.doi.org/10.22034/cmde.2020.42106.1818 doi: 10.22034/cmde.2020.42106.1818 |
[27] | U. Ali, A. Iqbal, M. Sohail, F. A. Abdullah, Z. Khan, Compact implicit difference approximation for time-fractional diffusion-wave equation, Alex. Eng. J., 61 (2022), 4119–4126. https://doi.org/10.1016/j.aej.2021.09.005 doi: 10.1016/j.aej.2021.09.005 |
[28] | M. A. Zaky, S. S. Ezz-Eldien, E. H. Doha, J. A. Tenreiro Machado, A. H. Bhrawy, An efficient operational matrix technique for multidimensional variable-Order time fractional diffusion equations, ASME J. Comput. Nonlinear Dyn., 11 (2016), 061002. https://doi.org/10.1115/1.4033723 doi: 10.1115/1.4033723 |
[29] | M. M. Izadkhah, J. Saberi-Nadjafi, Gegenbauer spectral method for time-fractional convection-difffusion equations with variable coefficients, Math. Methods Appl. Sci., 38 (2015), 3183–3194. https://doi.org/10.1002/mma.3289 doi: 10.1002/mma.3289 |
[30] | M. H. Heydari, A. Atangana, Z. Avazzadeh, M. R. Mahmoudi, An operational matrix method for nonlinear variable-order time fractional reaction-diffusion equation involving Mittag-Leffler kernel, Eur. Phys. J. Plus, 135 (2020), 237. https://doi.org/10.1140/epjp/s13360-020-00158-5 doi: 10.1140/epjp/s13360-020-00158-5 |
[31] | P. Pandey, S. Kumar, J. G$\acute{o}$mez-Aguilar, Numerical solution of the time fractional reaction-advection-diffusion equation in porous media, J. Appl. Comput. Mech., 8 (2022), 84–96. https://doi.org/10.22055/JACM.2019.30946.1796 doi: 10.22055/JACM.2019.30946.1796 |
[32] | S. Kumar, D. Zeidan, An efficient Mittag-Leffler kernel approach for time-fractional advection-reaction-diffusion equation, Appl. Numer. Math., 170 (2021), 190–207. https://doi.org/10.1016/j.apnum.2021.07.025 doi: 10.1016/j.apnum.2021.07.025 |
[33] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[34] | M. Hosseininia, M. H. Heydari, Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2d reaction-diffusion equation involving Mittag-Leffler non-singular kernel, Chaos Soliton. Fract., 127 (2019), 400–407. https://doi.org/10.1016/j.chaos.2019.07.017 doi: 10.1016/j.chaos.2019.07.017 |
[35] | F. R. Lin, H. Qu, A Runge-Kutta Gegenbauer spectral method for nonlinear fractional differential equations with Riesz fractional derivatives, Int. J. Comput. Math., 96 (2018), 417–435. https://doi.org/10.1080/00207160.2018.1487059 doi: 10.1080/00207160.2018.1487059 |
[36] | H. Tajadodi, A numerical approach of fractional advection-diffusion equation with Atangana-Baleanu derivative, Chaos Soliton. Fract., 130 (2020), 109527. https://doi.org/10.1016/j.chaos.2019.109527 doi: 10.1016/j.chaos.2019.109527 |
[37] | S. Yadav, R. K. Pandey, Numerical approximation of fractional Burgers equation with Atangana-Baleanu derivative in Caputo sense, Chaos Soliton. Fract., 133 (2020), 109630. https://doi.org/10.1016/j.chaos.2020.109630 doi: 10.1016/j.chaos.2020.109630 |