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Abstract: The fractional advection-reaction-diffusion equation plays a key role in describing the
processes of multiple species transported by a fluid. Different numerical methods have been proposed
for the case of fixed-order derivatives, while there are no such methods for the generalization of
variable-order cases. In this paper, a numerical treatment is given to solve a variable-order model with
time fractional derivative defined in the Atangana-Baleanu-Caputo sense. By using shifted Gegenbauer
cardinal function, this approach is based on the application of spectral collocation method and operator
matrices. Then the desired problem is transformed into solving a nonlinear system, which can greatly
simplifies the solution process. Numerical experiments are presented to illustrate the effectiveness and
accuracy of the proposed method.
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1. Introduction

With the development of fractional derivative, operators without singular kernel function has
become a research topic for the fact that it can better describe nonlocal dynamics systems. Some new
classes of them are available including the Caputo-Fabrizio derivative [1], the Atangana-Baleanu
derivative [2], etc. See [3–9] and references therein for further details. On the other hand, it is worth
noting that the fractional calculus has extended to study the variable-order (VO) models [10, 11],
which are generalizations of fixed-order fractional derivatives. For example, some VO fractional
differential diffusion processes can better simulate the temperature change than integer order classical
models.
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Many numerical treatments have recently been proposed to approximate VO fractional differential
equations. VO fractional derivatives are global operators in essence, it is more convenient to use global
technology such as spectral methods to deal with VO operators [12]. Spectral methods can obtain the
desired solutions with a small degree of freedom, which makes improved accuracy with a significant
reduction in the computational cost [13]. Here, we focus on the polynomial-based spectral collocation
methods. Lagrange polynomials were applied to simulate two chaotic practice problems modeled
by VO fractional differential equations [14]. A collocation technique based on a reproducing kernel
function was developed for VO fractional initial value problems and terminal value problems [15].
Shifted Jacobi polynomials were used to approximate VO time fractional Emder-Fowler equation [16],
two-dimensional VO time fractional cable equations [17]. Gegenbauer polynomials are a special of
Jacobi polynomials. As a significant kind of orthogonal polynomials, Gegenbauer polynomials are
the generalization of Legendre polynomials and Chebyshev polynomials, which have been widely
used in mathematical physics, engineering technology, scientific computing and other fields. Shifted
Gegenbauer operational matrices jointly with the Tau method were developed for solving fractional
differential equations [18]. Shifted Gegenbauer polynomials were applied to solve time-fractional
delay differential equations [19]. Fractional optimal control problems were solved via Gegenbauer
cardinal functions [20]. A numerical scheme in [21] was proposed to solve the nonlinear VO fractional
Schrödinger equation by using the shifted Legendre polynomials.

Diffusion process is one of the most famous processes in nature, such as the numerical simulation
of urban air quality [22], transport process of pollutants in groundwater [23], numerical determination
the pollution sources in a river [24], transport process of bimolecular reaction in porous media [25].
The fractional form of diffusion equation can model the random collision of solute molecules with
fluid molecules causes diffusion and produces fluxes from high concentrated to low concentration
regions. Numerical solutions of space fractional diffusion equation defined by Caputo derivative were
obtained via shifted Gegenbauer polynomials [26]. A compact implicit difference scheme was
proposed to approximate time-fractional diffusion-wave equation [27]. An operational matrix was
derived for multidimensional VO time fractional anomalous diffusion equations based on the shifted
Chebyshev collocation methods [28]. Gegenbauer spectral method was used to approximate
convection-diffusion equation with time fractional derivative [29]. By using the shifted Chebyshev
polynomial of the second kind as the cardinal function, an operational matrix scheme was given
in [30] for approximating VO time fractional nonlinear reaction-diffusion equation. A homotopy
perturbation method was applied for time fractional advection-reaction-diffusion equation with
Liouville-Caputo derivative [31]. A numerical method was proposed to approximate time fractional
advection-reaction-diffusion equation by using shifted Legendre polynomials [32].

Given the following VO time-fractional derivative model for advection-reaction-diffusion equation
∂θ(σ,τ)u(σ,τ)
∂τθ(σ,τ) = κ ∂

2u(σ,τ)
∂σ2 −µ

∂u(σ,τ)
∂σ

+ δ(σ, τ, u(σ, τ)) + f (σ, τ), (σ, τ) ∈ [0, X] × [0,T ],
u(σ, 0) = g(σ),
u(0, τ) = h1(τ), u(X, τ) = h2(τ).

(1.1)

Here, σ and τ represent spatial and time nodes respectively, u(σ, τ) is concentration of the solute in
fluid at finite distance, parameters κ and µ are the constant coefficients on R. Variable order θ(σ, τ) ∈
C(0, 1), δ(σ, τ, u(σ, τ)) and f (σ, τ) are continuous nonlinear source terms.

This paper aims to investigate numerically problem (1.1) with Atangana-Baleanu-Caputo defined
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time-fractional derivative without singular kernel [2]. For solving Eq (1.1), the Gegenbauer spectral
method will be used. Firstly, the considered model is approximated by the shifted Gegenbauer
polynomials (SGPs) with undetermined coefficients. A nonlinear algebraic equations are derived via
the SGPs operational matrices by choosing suitable collocation points. Finally, the desired problem is
transformed into solving the obtained nonlinear system.

This work proceeds as follows. Preliminaries on variable-order fractional derivatives with Mittage-
Leffler kernel are provided in Section 2. Review of some useful properties of the SGPs is presented in
Section 3. The operational matrices of cardinal functions for the SGPs are obtained in Section 4. Based
on the Gegenbauer spectral method, the proposed numerical scheme is formulated in Section 5. A few
illustrative examples with different initial conditions and boundary conditions are shown in Section 6.
The last section is devoted to a brief conclusion.

2. Variable order fractional calculus with Mittage-Leffler kernel

This section devotes to some useful preliminaries of Atangana-Baleanu-Caputo (ABC) derivatives
with fractional order. To begin with we introduce the Mittag-Leffler function Eα1,α2(τ) that will
commonly be encountered in fractional calculus as follows [33].

Eα1,α2(τ) =

∞∑
j=0

τ j

Γ ( jα1 + α2)
, τ ∈ C, α1, α2 ∈ R

+. (2.1)

Notation Eα1(τ) is used for α2 = 1. Where Γ(·) is the Gamma function and Γ(x) = (x − 1)! if x ∈ Z+.
The relationship between the Gamma function and the Beta function is

B(p, q) =

∫ 1

0
tp−1(1 − t)q−1dt =

Γ(p)Γ(q)
Γ(p + q)

, p, q ∈ R+. (2.2)

The definition of the ABC fractional derivative for the order θ̄ is given by

∂θ̄u(σ, τ)
∂τθ̄

=
C(θ̄)
1 − θ̄

∫ τ

0

∂u(σ, s)
∂s

Eθ̄

−θ̄(τ − s)θ̄

1 − θ̄

 ds, 0 < θ̄ < 1, (2.3)

where C(θ̄) is a normalization function taking the form

C(θ̄) = 1 − θ̄ +
θ̄

Γ(θ̄)
.

The definition of the ABC fractional derivative in the sense of variable order θ(σ, τ) is given by

∂θ(σ,τ)u(σ, τ)
∂τθ(σ,τ) =

C(θ(σ, τ))
1 − θ(σ, τ)

∫ τ

0

∂u(σ, s)
∂s

Eθ(σ,τ)

(
−θ(σ, τ)(τ − s)θ(σ,τ)

1 − θ(σ, τ)

)
ds, (2.4)

where C(θ(σ, τ)) = 1− θ(σ, τ) +
θ(σ,τ)

Γ(θ(σ,τ)) is a normalization function, and u(σ, τ) ∈ C1([0, X]× [0,T ]) is
a real function.

Corollary 2.1. ( [34]) Let k ∈ N ∪ {0}, there is

∂θ(σ,τ)τk

∂τθ(σ,τ) =

 0, k = 0,
C(θ(σ,τ))k!τk

1−θ(σ,τ) Eθ(σ,τ),k+1

(
−θ(σ,τ)τθ(σ,τ)

1−θ(σ,τ)

)
, k = 1, 2, . . . .

(2.5)
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3. The shifted Gegenbauer polynomials and their properties

Given a closed interval [0,T ], we use the shifted Gegenbauer polynomials (SGPs) of order m as the
cardinal function [35], which is denoted by Gλ

T,m(τ). It is defined by

Gλ
T,m(τ) =

Γ(λ + 0.5)
Γ(2λ)

m∑
k=0

(−1)k+mΓ(2λ + k + m)
k!(m − k)!Γ(k + λ + 0.5)

(
τ

T

)k
, m ∈ Z+, λ is a constant, (3.1)

with the orthogonal property ∫ T

0
Gλ

T,m(τ)Gλ
T,n(τ)wλ

T (τ)dτ = hλT,mδmn. (3.2)

In Eq (3.2), the weight function is wλ
T (τ) = (T − τ)λ−0.5τλ−0.5 and

hλT,m =
21−4λT 2λΓ(m + 2λ)π

(m + λ)m!Γ2(λ)
. (3.3)

If u(x) ∈ L2[0,T ], then it can be approximated by a polynomial up of order p in terms of the SGPs

u(τ) ' up(τ) =

p∑
m=0

cmGλ
T,m(τ), (3.4)

with the coefficients cm are determined by the orthogonality condition

cm =
1

hλT,m

∫ T

0
wλ

T (τ)u(τ)Gλ
T,m(τ)dτ, m = 0, 1, . . . , p. (3.5)

Let
C = [c0, c1, . . . , cp]T , ΨT,p(τ) = [Gλ

T,0(τ), Gλ
T,1(τ), . . . , Gλ

T,p(τ)], (3.6)

then Eq (3.4) is expressed in matrix form as

u(τ) ' up(τ) , CT ΨT,p(τ). (3.7)

Likewise, the function u(σ, τ) ∈ L2([0,T ] × [0,T ]) with two variables can be approximated by the
double SGPs of degrees q and p as

u(σ, τ) ' uq,p(σ, τ) =

q∑
m=0

p∑
n=0

umnGλ
X,m(σ)Gλ

T,n(τ) , ΨX,q(σ)T UΨT,p(τ), (3.8)

where U = [umn] is a (q + 1) × (p + 1) unknown coefficients matrix with

umn =
1

h(a,b)
X,m−1h(a,b)

T,n−1

∫ X

0

∫ T

0
wλ

X(σ)wλ
T (τ)u(σ, τ)Gλ

X,m−1(σ)Gλ
T,n−1(τ)dτdσ,

for m = 1, 2, . . . , q + 1, n = 1, 2, . . . , p + 1.
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4. Operational matrices

In this section, some novel operator matrices about the SGPs are derived. Let

Φp(τ) =
[
ϕp,0(τ), ϕp,1(τ), . . . , ϕp,p(τ)

]T
, with ϕp,m(τ) = τm (m = 0, 1, · · · , p). (4.1)

Lemma 4.1. The basis vector ΨT,p(τ) in (3.6) satisfies

Φp(τ) = ΘT,pΨT,p(τ), (4.2)

where the transform matrix ΘT,p = [ξT,mn] is an (p + 1)-order square matrix with

ξT,mn =
24λ−1T m−3(n + λ − 1)(n − 1)!Γ(λ + 0.5)Γ2(λ)

πΓ(n + 2λ − 1)

×

n−1∑
k=0

(−1)k+n−1 Γ(2λ + k + n − 1)Γ(λ + k + m − 0.5)
k!(n − k − 1)!Γ(λ + k + 0.5)Γ(2λ + k + m)

, 1 ≤ m, n ≤ p + 1.

Proof. By expressing the element ϕp,m̂(τ)(m̂ = 0, 1, . . . , p) of Φp(τ) in terms of the SGPs, we have

ϕp,m̂(τ) =

p∑
n̂=0

ξ̂T,m̂n̂Gλ
T,n̂(τ) , Θ̂T

T,m̂ΨT,p(τ), (4.3)

where
Θ̂T

T,m̂ =
[
ξ̂T,m̂0, ξ̂T,m̂1, . . . , ξ̂T,m̂p

]
.

Eq (3.5) yields

ξ̂T,m̂n̂ =
1

hλT,n̂

∫ T

0
wλ

T (τ)ϕp,m̂(τ)Gλ
T,n̂(τ)dτ, 0 ≤ n̂ ≤ p. (4.4)

By recalling that wλ
T (τ) = (T − τ)λ−0.5τλ−0.5 and using Eqs (3.1), (3.3) and (4.1), we get

ξ̂T,m̂n̂ =
(n̂ + λ)n̂!Γ2(λ)

21−4λT 2λΓ(n̂ + 2λ)π

∫ T

0
(T − τ)λ−0.5τλ−0.5τm̂dτ

×
Γ(λ + 0.5)

Γ(2λ)

n̂∑
k=0

(−1)k+n̂Γ(2λ + k + n̂)
k!(n̂ − k)!Γ(k + λ + 0.5)

(
τ

T

)k

=
(n̂ + λ)n̂!Γ2(λ)

21−4λT 2λΓ(n̂ + 2λ)π

n̂∑
k=0

(−1)k+n̂Γ(2λ + k + n̂)
k!(n̂ − k)!Γ(k + λ + 0.5)T k Iτ,

(4.5)

where Iτ =
∫ T

0
(T − τ)λ−0.5τλ+m̂+k−0.5dτ.

Let τ = T x and from (2.2), it is

Iτ = T 2λ+m̂+k−2
∫ 1

0
xλ+m̂+k−0.5(1 − x)λ−0.5dx

= T 2λ+m̂+k−2B(λ + m̂ + k + 0.5, λ + 0.5)

= T 2λ+m̂+k−2 Γ(λ + m̂ + k + 0.5)Γ(λ + 0.5)
(2λ + m̂ + k + 1)

.

(4.6)
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Substituting Eq (4.6) in (4.5) gives

ξ̂T,m̂n̂ =
T m̂−224λ−1n̂!(n̂ + λ)Γ2(λ)Γ(λ + 0.5)

πΓ(n̂ + 2λ)

×

n̂∑
k=0

(−1)k+n̂ Γ(k + 2λ + n̂)Γ(k + λ + m̂ − 0.5)
k!(n̂ − k − 1)!Γ(k + λ + 0.5)Γ(k + 2λ + m̂)

.

(4.7)

Finally, the desired result can be obtained by changing the indices m = m̂+1, n = n̂+1 and replacing
Θ̂T

T,m−1 and ξ̂T,(m−1)(n−1) by ΘT
T,m and ξT,mn, respectively. �

We give an example to illustrate for λ = 1, T = 1 and m = 4.

Θ1,4 =


167/148 0 0 0 0
167//296 167/592 0 0 0
707/2005 167/592 167/2368 0 0
643/2605 643/2605 437/4131 135/7657 0
453/2447 373/1763 437/3672 270/7657 135/30628


.

Lemma 4.2. The derivatives of the monomial function vector Φp(τ) in (4.1) satisfy

dΦp(τ)
dτ

= D(1)
p Φp(τ), (4.8)

and
drΦp(τ)

dτr = D(r)
p Φp(τ), (4.9)

in which D(r)
p represents the rth power of the strictly lower triangular matrix D(1)

p with

[
D(1)

p

]
mn

=

{
0, m = 1, 1 ≤ n ≤ p + 1,
m − 1, 2 ≤ m ≤ p + 1, 1 ≤ n ≤ p + 1,m − n = 1.

Proof. The result of the lemma can be implied by the definitions of vectors Φp(τ) and D(1)
p . �

Lemma 4.3. Φp(τ) denotes the monomial function vector in (4.1), then

∂θ(σ,τ)Φp(τ)
∂τθ(σ,τ) = Z(θ(σ,τ))

p Φp(τ), (4.10)

with [
Z(θ(σ,τ))

p

]
mn

=


0, m = 1, 1 ≤ n ≤ p + 1,

(m−1)!C(θ(σ,τ))
1−θ(σ,τ) Eθ(σ,τ),m

(
−θ(σ,τ)τθ(σ,τ)

1−θ(σ,τ)

)
,

2 ≤ m ≤ p + 1,
1 ≤ n ≤ p + 1,m = n.

Proof. It is easy to complete the proof by using Corollary 2.1. �
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Theorem 4.1. The derivative of SGPs vector ΨT,p(τ) in (3.6) satisfies

dΨT,p(τ)
dτ

= D(1)
T,pΨT,p(τ), (4.11)

where D(1)
T,p represents the (p + 1)-order operational matrix of the SGPs given by

D(1)
T,p = Θ−1

T,pD
(1)
p ΘT,p.

Generally, the r-order derivative of ΨT,p(τ) satisfies

drΨT,p(τ)
dτr = D(r)

T,pΨT,p(τ), (4.12)

in which D(r)
T,p represents the rth power of the matrix D(1)

T,p.

Proof. It can be proved simply from Eq (4.1) and Lemma 4.2. �

Theorem 4.2. The SGPs vector ΨT,p(τ) in (3.6) satisfies

∂θ(σ,τ)ΨT,p(τ)
∂τθ(σ,τ) = Z(θ(σ,τ))

T,p ΨT,p(τ) (4.13)

with
Z(θ(σ,τ))

T,p = Θ−1
T,pZ

(θ(σ,τ))
p ΘT,p.

Here the (p + 1)-order matrix Z(θ(σ,τ))
T,p is the operator matrix of SGPs in the sense of variable order

θ(σ, τ).

Proof. The proof is completed by using Lemma 4.2 and Eq (4.10). �

5. Numerical scheme

The unknown solution u(σ, τ) of Eq (1.1) is approximated by the SGPs as follows

u(σ, τ) ' uq,p(σ, τ) =

q∑
m=0

p∑
n=0

umnGλ
X,m(σ)Gλ

T,n(τ) , ΨX,q(ξ)T UΨT,p(τ), (5.1)

where U = [umn](q+1)×(p+1) is an unknown matrix, ΨX,q(ξ) and ΨT,p(τ) represent the vectors mentioned
in Eq (3.8).

Using Eqs (4.11), (4.12) and (5.1), one has

∂u(σ, τ)
∂σ

' ΨX,q(σ)T
(
D(1)

X,q

)T
UΨT,p(τ), (5.2)

and
∂2u(σ, τ)
∂σ2 ' ΨX,q(σ)T

(
D(2)

X,q

)T
UΨT,p(τ). (5.3)
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Moreover, Theorem 4.2 results in

∂θ(σ,τ)u(σ, τ)
∂τθ(σ,τ) ' ΨX,q(ξ)T UZ(θ(σ,τ))

T,p ΨT,p(τ). (5.4)

Combining Eqs (5.1)–(5.4) and (1.1), we have

R(σ, τ) ,=ΨX,q(σ)T
[
UZ(θ(σ,τ))

T,p − κ
(
D(2)

X,q

)
U + λ

(
D(1)

X,q

)
U
]
ΨT,p(τ)

−δ
(
σ, τ,ΨX,q(σ)T UΨT,p(τ)

)
− f (σ, τ).

(5.5)

From the initial and boundary conditions in Eq (1.1) and (5.1), we have

M1(σ) , ΨX,q(σ)T UΨT,p(0) − g(σ), (5.6)

and
M2(τ) , ΨX,q(0)T UΨT,p(τ) − h1(τ),
M3(τ) , ΨX,q(X)T UΨT,p(τ) − h2(τ).

(5.7)

Finally, Eqs (5.5)–(5.7) are combined to the following system
R (σm, τn) = 0, 2 ≤ m ≤ q, 2 ≤ n ≤ p + 1,
M1 (σm) = 0, 1 ≤ m ≤ q + 1,
M2 (τn) = 0, 2 ≤ n ≤ p + 1,
M3 (τn) = 0, 2 ≤ n ≤ p + 1.

(5.8)

For solving the unknown matrix U in the above (q + 1) × (p + 1) nonlinear algebraic equations, we
can choose Gaussian nodes

σm =
X
2

(
1 − cos

(
(2m − 1)π
2(q + 1)

))
, m = 1, 2, . . . , q + 1

and

τn =
T
2

(
1 − cos

(
(2n − 1)π
2(p + 1)

))
, n = 1, 2, . . . , p + 1.

Then by substituting U into Eq (5.1), an approximate solution of Eq (1.1) can be obtained.

6. Numerical examples and results

The effectiveness of the proposed scheme is shown through some numerical simulations. All
computations are carried out in MATLAB software. For i = 1, 2, let εi = max

(∣∣∣ui
E − ui

N

∣∣∣) be the i-th
maximum absolute error (MAE), with ui

E and ui
N are the analytical solution and numerical solution,

respectively. ηi = (qi + 1) (pi + 1) represents the number of the SGPs used in the i-th approximations.
Then the order of the convergence (CO) corresponding to the approximate solutions is defined by

CO = log η1
η2

(
ε2

ε1

)
.
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Example 1. If δ(σ, τ, u(σ, τ)) + f (σ, τ) = 0, then the model (1.1) reduces to [36]


∂θ(σ,τ)u(σ,τ)
∂τθ(σ,τ) = κ ∂

2u(σ,τ)
∂σ2 − µ

∂u(σ,τ)
∂σ

, (σ, τ) ∈ [0, 1] × [0, 1],

u(σ, 0) = exp
{
−

(σ−µ)2

4κ

}
,

u(0, τ) = 1
√

1+τ
exp

{
−

((1+τ)µ)2

4κ(1+τ)

}
, u(1, τ) = 1

√
1+τ

exp
{
−

(1−(1+τ)µ)2

4κ(1+τ)

}
.

(6.1)

If θ(σ, τ) = 1, the solution of Eq (6.1) reads

u(σ, τ) =
1

√
1 + τ

exp
{
−

(σ − (1 + τ)µ)2

4κ(1 + τ)

}
.

Set κ = 0.1, µ = 0.25, λ = 1 and q = 7, p = 7. Figure 1 shows the numerical results for u(σ, 0.4),
u(0.4, τ) for different constant functions θ(σ, τ). Numerical simulations for u(σ, 0.6), u(0.6, τ) with
some values of θ(σ, τ) are displayed in Figure 2. Comparison of the approximation solution with
θ(σ, τ) = 0.75 + 0.15sin(2πστ) and the exact solution with θ(σ, τ) = 1 are depicted in Figure 3. It
can be seen that the numerical solutions are convergent. Table 1 compares the absolute errors of the
method proposed in this paper (abbreviated as SGPs method) with those obtained in [36] for various
choices of θ(σ, τ) and q = p = 4 at t = 0.8. It is observed that we achieved an excellent approximation
for the exact solution. In Table 2, the L2 errors are presented for q = p = 6 and various values θ(σ, τ)
at x = 0.6.

Example 2. If κ = 1, µ = 0 and f (σ, τ) = 0, then the model (1.1) becomes [30]


∂θ(σ,τ)u(σ,τ)
∂τθ(σ,τ) =

∂2u(σ,τ)
∂σ2 + u(σ, τ)(1 − u(σ, τ))(u(σ, τ) − γ), (σ, τ) ∈ [0, 20] × [0, 1], 0 < γ < 1,

u(σ, 0) =
(
1 + e

−σ√
2

)−1
,

u(0, τ) =

(
1 + e

−1√
2

(
(1−2γ)
√

2
τ
))−1

, u(20, τ) =

(
1 + e

−1√
2

(
20+

(1−2γ)
√

2
τ
))−1

.

(6.2)

One finds that the solution of Eq (6.2) is u(σ, τ) =

(
1 + e

−1√
2

(
σ+

(1−2γ)
√

2
τ
))−1

in the case θ(σ, τ) = 1. For

λ = 0.5, q = 9, p = 12, the obtained numerical results of u(σ, 0.2) and u(3, τ) with different constant
functions θ(σ, τ) are shown in Figure 4. Results of some functions θ(σ, τ) with λ = 1, q = 9, p = 9
are shown in Figure 5. Comparison of the numerical solution with λ = 1, q = 9, p = 9, θ(σ, τ) =

0.75 + 0.2 sin(στ) and analytical solution with λ = 1, q = 9, p = 9, θ(σ, τ) = 1 are depicted in Figure 6.
It can be seen that the numerical solutions are convergent.
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Figure 1. Approximate solutions for various constant functions θ(σ, τ) when τ = 0.4 (left)
and σ = 0.4 (right) in Example 1.

Table 1. Comparison of the absolute errors between the SGPs method and [36] for various
constant functions θ(σ, τ) and q = p = 4 at t = 0.8 for Example 1.

x
θ(σ, τ) = 0.9 θ(σ, τ) = 0.97 θ(σ, τ) = 0.99

SGPs method [36] SGPs method [36] SGPs method [36]
0.0 7.7543e-06 9.1048e-05 7.7543e-06 2.9324e-04 7.7543e-06 2.7498e-04
0.1 4.1764e-03 2.8503e-03 2.1942e-03 1.4968e-03 7.9833e-04 6.3345e-04
0.2 4.5583e-03 2.1194e-03 3.0129e-03 1.4223e-03 1.2540e-03 6.0235e-04
0.3 1.7086e-03 1.4002e-03 2.3432e-03 1.2294e-04 1.0646e-03 2.0999e-05
0.4 3.2240e-03 6.5033e-03 6.2026e-04 1.8748e-03 4.2900e-04 8.2568e-04
0.5 8.9240e-03 1.1885e-02 1.5920e-03 3.9751e-03 3.7131e-04 1.6113e-03
0.6 1.4130e-02 1.6362e-02 3.8215e-03 5.7354e-03 1.1935e-03 2.1911e-03
0.7 1.7624e-02 1.8878e-02 5.6763e-03 6.8670e-03 2.0213e-03 2.6014e-03
0.8 1.7986e-02 1.8271e-02 6.6020e-03 7.0116e-03 2.7225e-03 2.8375e-03
0.9 1.3170e-02 1.2881e-02 5.4550e-03 5.3375e-03 2.6220e-03 2.4489e-03

Table 2. L2 errors for various choices of θ(σ, τ) and q = p = 6 at x = 0.6 for Example 1.

t θ(σ, τ) = 0.65 θ(σ, τ) = 0.75 θ(σ, τ) = 0.85 θ(σ, τ) = 0.95
0.0 1.7024e-04 1.7024e-04 1.7024e-04 1.7024e-04
0.1 2.1400e-02 1.3067e-02 5.6521e-03 1.6086e-03
0.2 3.5167e-02 2.4885e-02 1.4133e-02 4.4922e-03
0.3 4.2944e-02 3.2616e-02 2.0529e-02 6.8666e-03
0.4 4.6426e-02 3.6283e-02 2.3783e-02 8.2178e-03
0.5 4.6979e-02 3.7017e-02 2.4574e-02 8.6250e-03
0.6 4.5540e-02 3.5991e-02 2.3948e-02 8.3791e-03
0.7 4.2631e-02 3.3851e-02 2.2541e-02 7.7379e-03
0.8 3.8505e-02 3.0675e-02 2.0401e-02 6.8207e-03
0.9 3.3413e-02 2.6451e-02 1.7405e-02 5.6513e-03
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Figure 2. Approximate solutions for various sin functions θ(σ, τ) when τ = 0.6 (left) and
σ = 0.6 (right) in Example 1.

Figure 3. Comparison of the numerical solution (θ(σ, τ) = 0.75 + 0.15sin(2πστ), left) and
exact solution (θ(σ, τ) = 1, right) in Example 1.

Figure 4. Exact solution and the numerical solutions for some constant functions θ(σ, τ)
when τ = 0.2 (left) and σ = 3 (right) in Example 2.
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Figure 5. Exact solution and the numerical solutions for various sin functions θ(σ, τ) when
τ = 0.2 (left) and σ = 3 (right) in Example 2.

Figure 6. Comparison of the numerical solutions (θ(σ, τ) = 0.75 + 0.2sin(στ), left) and the
exact solution (θ(σ, τ) = 1, right) in Example 2.

In order to compare the results with the works in [30], we discuss the following case

κ = 2 , δ(σ, τ, u(σ, τ)) = sin(u(σ, τ)) , g(σ) =
(
1 + e

−σ√
2

)−1
,

h1(τ) =

(
1 + e

−1√
2

(
(1−2γ)
√

2
τ
))−1

, h2(τ) =

(
1 + e

−1√
2

(
20+

(1−2γ)
√

2
τ
))−1

, (σ, τ) ∈ [0, 2] × [0, 2],

f (σ, τ) =

(
C(θ(σ, τ))3!τ3

1 − θ(σ, τ)
Eθ(σ,τ),4

(
−θ(σ, τ)τθ(σ,τ)

1 − θ(σ, τ)

)
+ 2τ3

)
sin(σ) − sin

(
τ3 sin(σ)

)
.

(6.3)

The analytical solution of this case is given by u(σ, τ) = τ3 sin(σ). This example has been solved for
two different functions θ(σ, τ) by utilizing the presented method (abbreviated as SGPs method) with
p = 3 and some values of q. In Tables 3 and 4, the MAE errors are listed for the present method
(abbreviated as SGPs method) and the method proposed in [30]. It can be seen that the SGPs method
is able to achieve smaller errors.
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Table 3. Comparison of the MAEs of the SGPs method and [30] for θ(σ, τ) = 0.35 +

0.20 sin(στ) with q = 6 and q = 8 for p = 3 in (6.3).

(σ, τ)
θ(σ, τ) = 0.35 + 0.2sin(στ)

q = 6 q = 8
SGPs method [15] SGPs method [15]

(0.4,0.4) 7.5142e-09 4.0307e-06 2.0855e-10 6.0803e-08
(0.8,0.8) 1.3277e-06 2.1531e-05 4.0701e-10 1.1765e-07
(1.2,1.2) 1.4326e-06 2.5412e-05 8.6563e-09 1.0783e-07
(1.6,1.6) 1.2779e-07 2.6078e-05 2.8258e-08 1.1608e-07
(2.0,2.0) 1.5072e-05 0.0000e-00 8.0406e-08 0.0000e-00

Table 4. Comparison of the MAEs of the SGPs method and [30] for θ(σ, τ) = 0.75 +

0.20 sin(στ) with q = 6 and q = 8 for p = 3 in (6.3).

(σ, τ)
θ(σ, τ) = 0.75 + 0.2sin(στ)

q = 6 q = 8
SGPs method [30] SGPs method [30]

(0.4,0.4) 1.0110e-08 2.3337e-06 1.3449e-10 3.2104e-10
(0.8,0.8) 1.2079e-06 1.0804e-05 6.3519e-12 4.8010e-08
(1.2,1.2) 1.5555e-06 2.8356e-05 8.3785e-09 1.0948e-07
(1.6,1.6) 4.4606e-07 3.2703e-05 2.7956e-08 1.2767e-07
(2.0,2.0) 1.5071e-05 0.0000e-00 8.0337e-08 0.0000e-00

Example 3. If κ = µ = 1 and f (σ, τ)= 0, then the model (1.1) is


∂θ(σ,τ)u(σ,τ)
∂τθ(σ,τ) =

∂2u(σ,τ)
∂σ2 −

∂u(σ,τ)
∂σ

+ δ(σ, τ, u(σ, τ)), 0 ≤ σ ≤ X, 0 ≤ τ ≤ T,
u(σ, 0) = eσ,
u(0, τ) = eτ, u(X, τ) = eτ+X.

(6.4)

Let δ(σ, τ, u(σ, τ)) = u(σ, τ)∂
2u(σ,τ)
∂σ2 − u(σ, τ)2 + u(σ, τ) and θ(σ, τ) = 1, then the solution of Eq (6.4)

reads u(σ, τ) = eσ+τ. When λ = 0.5, X = 0.5,T = 0.5, q = 10, p = 8, numerical results of u(σ, 0.2) and
u(0.2, τ) with constant function θ(σ, τ) are shown in Figure 7. Comparison of the numerical solution
with λ = 1, X = 0.5,T = 1, q = 9, p = 9, θ(σ, τ) = 0.75 + 0.15 sin(2πστ) and the analytical solution
with θ(σ, τ) = 1 are depicted in Figure 8. It can be seen that the numerical solutions are convergent.
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Figure 7. Exact solution and the numerical solutions for some constants when τ = 0.2 (left)
and σ = 0.2 (right) in Example 3.

Figure 8. Comparison of the numerical solution (θ(σ, τ) = 0.75 + 0.15 sin(2πστ), left) and
exact solution (θ(σ, τ) = 1, right) in Example 3.

Example 4. If κ = µ = 1 and δ(σ, τ, u(σ, τ)) = 2u(σ, τ), then the model (1.1) reads like
∂θ(σ,τ)u(σ,τ)
∂τθ(σ,τ) =

∂2u(σ,τ)
∂σ2 −

∂u(σ,τ)
∂σ

+ 2u(σ, τ) + f (σ, τ), 0 ≤ σ ≤ X, 0 ≤ τ ≤ T,
u(σ, 0) = sin(σ),
u(0, τ) = 0, u(X, τ) = sin(X)e−τ.

(6.5)

Given

f (σ, τ) =
−C(θ(σ, τ))τ sin(σ)

1 − θ(σ, τ)

∞∑
k=0

(−τ)kEθ(σ,τ),k+2

(
−θ(σ, τ)τθ(σ,τ)

1 − θ(σ, τ)

)
− sin(σ)e−τ + 0.5 cos(σ)e−τ,

the solution of Eq (6.5) is u(σ, τ) = sin(σ)e(−τ). Comparison of the numerical solution when X =

0.5,T = 1, λ = 1, q = 6, p = 6, θ(σ, τ) = 0.7 + 0.2sin(στ) and the exact solution are depicted in
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Figure 9. Table 5 displays the results of the MAEs and CO for different parameters in Example 4. It is
clear that the SGPs method has a good convergence rate.

Figure 9. Comparison of the approximate solution (θ(σ, τ) = 0.7 + 0.2 sin(στ), left) and the
exact solution (right) in Example 4.

Table 5. The MAEs, L2 errors and CO of the SGPs method with some different parameters
in Example 4.

q p
λ=0.5 λ=1

L2 MAEs CO L2 MAEs CO
5 5 1.8456e-05 1.1892E-06 - 1.8456e-05 1.1892E-06 -
6 6 2.4800e-07 5.5076E-08 8.4255 2.4790e-07 5.5079E-08 8.4254
7 7 2.3590e-08 1.3617E-09 12.0013 2.3477e-08 1.3629E-09 11.9984
8 8 1.6077e-10 5.4460E-11 12.0533 9.5183e-10 8.9108E-11 10.2131

q p
λ=1.5 λ=2

L2 MAEs CO L2 MAEs CO
5 5 1.8456e-05 1.1892E-06 - 1.8456e-05 1.1892E-06 -
6 6 2.4802e-07 5.5075E-08 8.4256 2.4798e-07 5.5077E-08 8.4255
7 7 2.3628e-08 1.3595E-09 12.0065 2.3620e-08 1.3403E-09 12.0526
8 8 8.7781e-11 5.0231E-11 12.3499 3.0124e-09 1.4625E-10 8.2952

Example 5. If κ = µ = 1 and δ(σ, τ, u(σ, τ)) = 0, then the model (1.1) is{
∂θ(σ,τ)u(σ,τ)
∂τθ(σ,τ) =

∂2u(σ,τ)
∂σ2 −

∂u(σ,τ)
∂σ

+ f (σ, τ) , (σ, τ) ∈ [0, 1] × [0, 1],
u(σ, 0) = 0 , u(0, τ) = u(1, τ) = 0.

(6.6)

For force function

f (σ, τ) = 120
C(θ(σ, τ))
1 − θ(σ, τ)

τ5 sin πσ × Eθ(σ,τ),6

[
−θ(σ, τ)

1 − θ(σ, τ)
τθ(σ,τ)

]
+ (π sin(πθ(σ, τ)) + cos(πθ(σ, τ))),
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the solution of Eq (6.6) reads u(σ, τ) = τ5 sin πσ. Comparison of the numerical solution when λ =

1.2, q = 14, p = 9, θ(σ, τ) = 0.8− 0.2e−2στ and the exact solution are displayed in Figure 10. It can be
seen that the numerical solution is convergent.

Figure 10. Comparison of the approximate solution (θ(σ, τ) = 0.8 − 0.2e−2στ, left) and the
exact solution (right) in Example 4.

Finally, we try to use the proposed computational method to solve another type problem.

Example 6. Consider the VO fractional burgers equation [37]

{
∂θ(σ,τ)u(σ,τ)
∂τθ(σ,τ) = V ∂2u(σ,τ)

∂σ2 − u(σ, τ)∂u(σ,τ)
∂σ

+ f (σ, τ), 0 < σ < X, 0 < τ < T,
u(σ, 0) = sin(2πσ) , u(0, τ) = u(1, τ) = 0.

(6.7)

It is hard to find the analytical solution of Eq (6.7) with ABC fractional derivative, but we are able
to predict by the proposed method simultaneously the solutions with ordinary and variable fractional
derivative with some initial parameters. Choose X = 1, T = 5, numerical results of some spatial and
time nodes with different θ(σ, τ) are shown in Figures 11 and 12 respectively. Choose λ = 0.5, the 3D
diagrams of the solutions predicted by the proposed algorithm when θ(σ, τ) = 0.4 and
θ(σ, τ) = 0.75 + 0.2sin(2στ) respectively are shown in Figure 13. It is clear that the numerical
solution is convergent.
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Figure 11. Exact solution and the numerical solutions for various constant functions θ(σ, τ)
when τ = 2 (left) and σ = 0.2 (right) in Example 6.

Figure 12. Exact solution and the numerical solutions for some θ(σ, τ) when τ = 4 (left) and
σ = 0.4 (right) in Example 6.

Figure 13. Numerical solutions when θ(σ, τ) = 0.4 (λ = 0.5, left) and θ(σ, τ) =

0.75 + 0.2sin(2στ) (λ = 0.5, right) in Example 6.
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7. Conclusions

Shifted orthogonal polynomials combined with spectral methods (such as Galerkin method,
collocation method and tau method) can transform complex variable fractional differential equations
into algebraic equations, so as to reduce the complexity and improve the accuracy. We propose a
numerical approach to solve a VO time fractional model for advection-reaction-diffusion equation
with Atangana-Baleanu-Caputo derivative via the shifted Gegenbauer polynomial. By using a
collocation approach and obtaining the operational matrix, all that remains is to solve a nonlinear
equations. Some examples are given to illustrate the effectiveness of the proposed numerical
algorithm.
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