The bivariate and multivariate probability distributions are useful in joint modeling of several random variables. The development of bivariate and multivariate distributions is relatively tedious as compared with the development of univariate distributions. In this paper we have proposed a new method of developing bivariate and multivariate families of distributions from the univariate marginals. The properties of the proposed families of distributions have been studies. These properties include marginal and conditional distributions; product, ratio and conditional moments; joint reliability function and dependence measures. Statistical inference about the proposed families of distributions has also been done. The proposed bivariate family of distributions has been studied for Weibull baseline distribution giving rise to a new bivariate Weibull distribution. The properties of the proposed bivariate Weibull distribution have been studied alongside maximum likelihood estimation of the unknown parameters. The proposed bivariate Weibull distribution has been used for modeling of real bivariate data sets and we have found that the proposed bivariate Weibull distribution has been a suitable choice for the modeling of data used.
Citation: Jumanah Ahmed Darwish, Saman Hanif Shahbaz, Lutfiah Ismail Al-Turk, Muhammad Qaiser Shahbaz. Some bivariate and multivariate families of distributions: Theory, inference and application[J]. AIMS Mathematics, 2022, 7(8): 15584-15611. doi: 10.3934/math.2022854
The bivariate and multivariate probability distributions are useful in joint modeling of several random variables. The development of bivariate and multivariate distributions is relatively tedious as compared with the development of univariate distributions. In this paper we have proposed a new method of developing bivariate and multivariate families of distributions from the univariate marginals. The properties of the proposed families of distributions have been studies. These properties include marginal and conditional distributions; product, ratio and conditional moments; joint reliability function and dependence measures. Statistical inference about the proposed families of distributions has also been done. The proposed bivariate family of distributions has been studied for Weibull baseline distribution giving rise to a new bivariate Weibull distribution. The properties of the proposed bivariate Weibull distribution have been studied alongside maximum likelihood estimation of the unknown parameters. The proposed bivariate Weibull distribution has been used for modeling of real bivariate data sets and we have found that the proposed bivariate Weibull distribution has been a suitable choice for the modeling of data used.
[1] | N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Commun. Stat. Theor. M., 31 (2002), 497–512. https://doi.org/10.1081/STA-120003130 doi: 10.1081/STA-120003130 |
[2] | W. T. Shaw, I. R. C. Buckley, The alchemy of probability distributions: Beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map, 2007. |
[3] | M. M. Rahman, B. Al-Zahrani, S. H. Shahbaz, M. Q. Shahbaz, Transmuted distributions: A review, Pak. J. Stat. Oper. Res., 16 (2020), 83–94. https://doi.org/10.18187/pjsor.v16i1.3217 doi: 10.18187/pjsor.v16i1.3217 |
[4] | A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, METRON, 71 (2013), 63–79. https://doi.org/10.1007/s40300-013-0007-y doi: 10.1007/s40300-013-0007-y |
[5] | M. Alizadeh, F. Merovci, G. G. Hamedani, Generalized transmuted family of distributions: Properties and applications, Hacett. J. Math. Stat., 46 (2016), 645–667. https://doi.org/10.15672/HJMS.201610915478 doi: 10.15672/HJMS.201610915478 |
[6] | E. J. Gumbel, Multivariate distributions with given margins and analytical examples, Bulletin de l'Institut International de Statistique, 37 (1960), 363–373. |
[7] | E. J. Gumbel, Bivariate exponential distributions, J. Am. Stat. Assoc., 55 (1960), 698–707. https://doi.org/10.1080/01621459.1960.10483368 doi: 10.1080/01621459.1960.10483368 |
[8] | E. J. Gumbel, Bivariate logistic distributions, J. Am. Stat. Assoc., 56 (1961), 335–349. https://doi.org/10.1080/01621459.1961.10482117 doi: 10.1080/01621459.1961.10482117 |
[9] | S. P. Satterthwaite, T. P. Hutchinson, A generalization of Gumbel bivariate logistic distribution, Metrika, 25 (1978), 163–170. https://doi.org/10.1007/BF02204361 doi: 10.1007/BF02204361 |
[10] | M. M. Ali, N. N. Mikhail, M. S. Haq, A class of bivariate distributions including the bivariate logistic, J. Multivariate Anal., 8 (1978), 405–412. https://doi.org/10.1016/0047-259X(78)90063-5 doi: 10.1016/0047-259X(78)90063-5 |
[11] | R. B. Nelsen, An introduction to copulas, Second Edition, Springer Science & Business Media, 2006. |
[12] | N. Balakrishnan, C. D. Lai, Continuous bivariate distributions, Second Edition, Springer Science & Business Media, 2009. |
[13] | W. Barreto-Souza, A. J. Lemonte, Bivariate Kumaraswamy distribution: Properties and a new method to generate bivariate classes, J. Theor. Appl. Stat., 47 (2013), 1321–1342. https://doi.org/10.1080/02331888.2012.694446 doi: 10.1080/02331888.2012.694446 |
[14] | P. G. Sankaran, N. U. Nair, P. John, A family of bivariate Pareto distributions, Statistica, 74 (2014), 199–215. https://doi.org/10.6092/issn.1973-2201/5001 doi: 10.6092/issn.1973-2201/5001 |
[15] | J. M. Sarabia, P. Faustino, V. Jorda, Bivariate beta-generated distributions with applications to well-being data, J. Stat. Dstrib. Appl., 1 (2014), 15. https://doi.org/10.1186/2195-5832-1-15 doi: 10.1186/2195-5832-1-15 |
[16] | A. Algarni, M. Q. Shahbaz, Bivariate beta-inverse Weibull distribution: Theory and applications, Comput. Syst. Sci. Eng., 36 (2021), 83–100. https://doi.org/10.32604/csse.2021.014342 doi: 10.32604/csse.2021.014342 |
[17] | M. Ganji, H. Bevrani, N. H. Golzar, A new method for generating continuous bivariate distribution families, JIRSS, 17 (2018), 109–129. https://doi.org/10.29252/jirss.17.1.109 doi: 10.29252/jirss.17.1.109 |
[18] | J. A. Darwish, L. I. Al turk, M. Q. Shahbaz, The bivariate transmuted family of distributions: Theory and applications, Comput. Syst. Sci. Eng., 36 (2021), 131–144. https://doi.org/10.32604/csse.2021.014764 doi: 10.32604/csse.2021.014764 |
[19] | S. Cambanis, Some properties and generalizations of multivariate Eyraund-Gumbel-Morgensten distributions, J. Multivariate Anal., 7 (1977), 551–559. https://doi.org/10.1016/0047-259X(77)90066-5 doi: 10.1016/0047-259X(77)90066-5 |
[20] | J. A. Darwish, L. I. Al turk, M. Q. Shahbaz, Bivariate transmuted Burr distribution: Properties and applications, Pak. J. Stat. Oper. Res., 17 (2021), 15–24. https://doi.org/10.18187/pjsor.v17i1.3625 doi: 10.18187/pjsor.v17i1.3625 |
[21] | I. W. Burr, Cumulative frequency functions, Ann. Math. Stat., 13 (1942), 215–232. http://dx.doi.org/10.1214/aoms/1177731607 doi: 10.1214/aoms/1177731607 |
[22] | H. A. David, H. N. Nagaraja, Order statistics, New York: John Wiley & Sons, 2003. |
[23] | M. Q. Shahbaz, M. Ahsanullah, S. Hanif Shahbaz, B. Al-Zahrani, Ordered random variables: Theory and applications, Amsterdam: Springer, 2016. |
[24] | D. F. Moore, Applied survival analysis using R, New York: Springer, 2016. |
[25] | M. Modarres, M. P. Kaminskiy, V. Krivtsov, Reliability engineering and risk analysis a practical guide, CRC Press, 2017. |
[26] | A. P. Basu, Bivariate failure rate, J. Am. Stat. Assoc., 66 (1971), 103–104. http://dx.doi.org/10.1080/01621459.1971.10482228 doi: 10.1080/01621459.1971.10482228 |
[27] | P. V. Holand, Y. J. Wang, Dependence function for continuous bivariate densities, Commun. Stat. Theor. M., 16 (1987), 863–876. https://doi.org/10.1080/03610928708829408 doi: 10.1080/03610928708829408 |
[28] | S. Zacks, Introduction to reliability analysis, Berlin: Springer, 1992. |
[29] | M. D. Taylor, Multivariate measures of concordance for copulas and their marginal, Depend. Model., 4 (2016), 224–236. https://doi.org/10.1515/demo-2016-0013 doi: 10.1515/demo-2016-0013 |
[30] | F. Schmid, R. Schmidt, Multivariate extensions of Spearman's rho and related statistics. Stat. Probabil. Lett., 77 (2007), 407–416. https://doi.org/10.1016/j.spl.2006.08.007 doi: 10.1016/j.spl.2006.08.007 |
[31] | W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech., 18 (1951), 293–297. https://doi.org/10.1115/1.4010337 doi: 10.1115/1.4010337 |
[32] | F. L. Ramsey, D. W. Schafer, The statistical sleuth: A course in methods of data analysis, 2012. |
[33] | M. Mohsin, J. Pilz, S. Gunter, S. Hanif Shahbaz, M. Q. Shahbaz, Some distributional properties of the concomitants of record statistics for bivariate pseudo-exponential distribution and characterization, J. Prime Res. Math., 6 (2010), 32–37. |
[34] | S. Hanif Shahbaz, M. Al-Sobhi, M. Q. Shahbaz, B. Al-Zahrani, A new multivariate Weibull distribution, Pak. J. Stat. Oper. Res., 14 (2018), 75–88. https://doi.org/10.18187/pjsor.v14i1.2192 doi: 10.18187/pjsor.v14i1.2192 |
[35] | A. Henningsen, O. Toomet, Maxlik: A package for maximum likelihood estimation in R, Comput. Stat., 26 (2011), 443–458. http://dx.doi.org/10.1007/s00180-010-0217-1 doi: 10.1007/s00180-010-0217-1 |