Research article Special Issues

New classes of unified fractional integral inequalities

  • Received: 06 April 2022 Revised: 06 May 2022 Accepted: 09 June 2022 Published: 23 June 2022
  • MSC : 26A33, 26D10, 26D53

  • Many researchers in recent years have studied fractional integrals and derivatives. Some authors recently introduced generalized fractional integrals, the so-called unified fractional integrals. In this article, we establish certain new integral inequalities by employing the unified fractional integral operators. In fact, for a class of $ n $ $ (n\in\mathbb{N}), $ positive continuous and decreasing functions on $ [v_1, v_2], $ certain new classes of integral inequalities are discussed. The inequalities established in this manuscript are more general forms of the classical inequalities given in the literature. The existing classical inequalities can be rectified by imposing the conditions stated in remarks. By imposing certain conditions on $ \hbar $ and $ \Lambda $ available in the literature, many new forms of fractional integral inequalities can be produced.

    Citation: Gauhar Rahman, Muhammad Samraiz, Saima Naheed, Artion Kashuri, Kamsing Nonlaopon. New classes of unified fractional integral inequalities[J]. AIMS Mathematics, 2022, 7(8): 15563-15583. doi: 10.3934/math.2022853

    Related Papers:

  • Many researchers in recent years have studied fractional integrals and derivatives. Some authors recently introduced generalized fractional integrals, the so-called unified fractional integrals. In this article, we establish certain new integral inequalities by employing the unified fractional integral operators. In fact, for a class of $ n $ $ (n\in\mathbb{N}), $ positive continuous and decreasing functions on $ [v_1, v_2], $ certain new classes of integral inequalities are discussed. The inequalities established in this manuscript are more general forms of the classical inequalities given in the literature. The existing classical inequalities can be rectified by imposing the conditions stated in remarks. By imposing certain conditions on $ \hbar $ and $ \Lambda $ available in the literature, many new forms of fractional integral inequalities can be produced.



    加载中


    [1] T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 2017 (2017), 78. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1
    [2] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9
    [3] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel, theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
    [4] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [5] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
    [6] Z. Dahmani, L. Tabharit, On weighted Grüss-type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31–38. https://doi.org/10.5373/jarpm.392.032110 doi: 10.5373/jarpm.392.032110
    [7] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497.
    [8] W. Liu, Q. A. Ngǒ, V. N. Huy, Several interesting integral inequalities, J. Math. Inequ., 3 (2009), 201–212. https://doi.org/10.7153/jmi-03-20 doi: 10.7153/jmi-03-20
    [9] K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, M. Arshad, Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric $k$-function, J. Inequal. Appl., 2018 (2018), 135. https://doi.org/10.1186/s13660-018-1717-8 doi: 10.1186/s13660-018-1717-8
    [10] K. S. Nisar, G. Rahman, J. Choi, S. Mubeen, M. Arshad, Certain Gronwall type inequalities associated with Riemann-Liouville $k$- and Hadamard $k$-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249–263. https://doi.org/10.7858/eamj.2018.018 doi: 10.7858/eamj.2018.018
    [11] M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, $(k, s)$-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77–89. https://doi.org/10.15672/HJMS.20164512484 doi: 10.15672/HJMS.20164512484
    [12] E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for $k$-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34. https://doi.org/10.1016/j.amc.2015.07.026 doi: 10.1016/j.amc.2015.07.026
    [13] G. Rahman, K. S. Nisar, S. Mubeen, J. Choi, Certain Inequalities involving the $(k, \rho)$-fractional integral operator, Far East J. Math. Sci., 103 (2018), 1879–1888. https://doi.org/10.17654/MS103111879 doi: 10.17654/MS103111879
    [14] M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Am. Math. Soc., 145 (2017), 1527–1538. https://doi.org/10.1090/proc/13488 doi: 10.1090/proc/13488
    [15] E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 169 (2017), 10. https://doi.org/10.1186/s13660-017-1444-6 doi: 10.1186/s13660-017-1444-6
    [16] P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized $k$-fractional integrals, J. Inequal. Appl., 55 (2017), 10. https://doi.org/10.1186/s13660-017-1318-y doi: 10.1186/s13660-017-1318-y
    [17] Z. Dahmani, New classes of integral inequalities of fractional order, Le Matematiche, 69 (2014), 237–247.
    [18] M. Aldhaifallah, M. Tomar, K. S. Nisar, S. D. Purohit, Some new inequalities for $(k, s)$-fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 5374–5381. https://doi.org/10.22436/jnsa.009.09.06 doi: 10.22436/jnsa.009.09.06
    [19] G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, AIMS Math., 3 (2018), 575–583. https://doi.org/10.3934/Math.2018.4.575 doi: 10.3934/Math.2018.4.575
    [20] C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of Hermite-Hadamard type for $k$-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), 1–9.
    [21] F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Čebyšev type for conformable $k$-fractional integral operators, Symmetry, 10 (2018), 614. https://doi.org/10.3390/sym10110614 doi: 10.3390/sym10110614
    [22] S. Mubeen, G. M. Habibullah, $k$-Fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [23] M. Z. Sarikaya, H. Yildirim, On generalization of the Riesz potential, Indian J. Math. Math. Sci., 3 (2007), 231–235.
    [24] G. Rahman, A. Hussain, A. Ali, K. S. Nisar, R. N. Mohamed, More general weighted-type fractional integral inequalities via Chebyshev functionals, Fractal Fract., 5 (2021), 232. https://doi.org/10.3390/fractalfract5040232 doi: 10.3390/fractalfract5040232
    [25] F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28 (2020), 2040011. https://doi.org/10.1142/S0218348X20400113 doi: 10.1142/S0218348X20400113
    [26] G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci., 3 (2019), 210–216. https://doi.org/10.30538/oms2019.0064 doi: 10.30538/oms2019.0064
    [27] M. Z. Sarikaya, F. Ertuǧral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova Math. Comput. Sci. Ser., 47 (2020), 193–213.
    [28] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier: Amersterdam, 2006.
    [29] L. Akın, A new approach for the fractional integral operator in time scales with variable exponent Lebesgue spaces, Fractal Fract., 5 (2021), 7. https://doi.org/10.3390/fractalfract5010007 doi: 10.3390/fractalfract5010007
    [30] L. Akın, On the fractional maximal delta integral type inequalities on time scales, Fractal Fract., 4 (2020), 26. https://doi.org/10.3390/fractalfract4020026 doi: 10.3390/fractalfract4020026
    [31] L. Akın, New principles of non-linear integral inequalities on time scales, Appl. Math. Nonlinear Sci., 6 (2021), 1–8. https://doi.org/10.2478/amns.2021.1.00001 doi: 10.2478/amns.2021.1.00001
    [32] A. Younus, M. Asif, J. Alzabut, A. Ghaffar, K. S. Nisar, A new approach to interval-valued inequalities, Adv. Differ. Equ., 319 (2020). https://doi.org/10.1186/s13662-020-02781-z
    [33] M. M. Matar, A. A. Lubbad, J. Alzabut, On $p$-Laplacian boundary value problems involving Caputo-Katugampula fractional derivatives, Math. Method. Appl. Sci., 2020, https://doi.org/10.1002/mma.6534
    [34] W. Sudsutad, N. Jarasthitikulchai, C. Thaiprayoon, J. Kongson, J. Alzabut, Novel generalized proportional fractional integral inequalities on probabilistic random variables and their applications, Mathematics, 10 (2022), 573. https://doi.org/10.3390/math10040573 doi: 10.3390/math10040573
    [35] J. Alzabut, T. Abdeljawad, F. Jarad, W. Sudsutad, A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 101 (2019). https://doi.org/10.1186/s13660-019-2052-4
    [36] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Gordon and Breach Science: Yverdon, 1993.
    [37] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [38] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
    [39] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 6570. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [40] T. U. Khan, M. A. Khan, Generalized conformable fractional integral operators, J. Comput. Appl. Math., 346 (2018), 378–389. https://doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1569) PDF downloads(69) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog