Many researchers in recent years have studied fractional integrals and derivatives. Some authors recently introduced generalized fractional integrals, the so-called unified fractional integrals. In this article, we establish certain new integral inequalities by employing the unified fractional integral operators. In fact, for a class of n (n∈N), positive continuous and decreasing functions on [v1,v2], certain new classes of integral inequalities are discussed. The inequalities established in this manuscript are more general forms of the classical inequalities given in the literature. The existing classical inequalities can be rectified by imposing the conditions stated in remarks. By imposing certain conditions on ℏ and Λ available in the literature, many new forms of fractional integral inequalities can be produced.
Citation: Gauhar Rahman, Muhammad Samraiz, Saima Naheed, Artion Kashuri, Kamsing Nonlaopon. New classes of unified fractional integral inequalities[J]. AIMS Mathematics, 2022, 7(8): 15563-15583. doi: 10.3934/math.2022853
[1] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[2] | Kottakkaran Sooppy Nisar, Gauhar Rahman, Aftab Khan, Asifa Tassaddiq, Moheb Saad Abouzaid . Certain generalized fractional integral inequalities. AIMS Mathematics, 2020, 5(2): 1588-1602. doi: 10.3934/math.2020108 |
[3] | Majid K. Neamah, Alawiah Ibrahim . Generalized proportional fractional integral inequalities for convex functions. AIMS Mathematics, 2021, 6(10): 10765-10777. doi: 10.3934/math.2021625 |
[4] | Erhan Deniz, Ahmet Ocak Akdemir, Ebru Yüksel . New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals. AIMS Mathematics, 2020, 5(2): 956-965. doi: 10.3934/math.2020066 |
[5] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[6] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
[7] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[8] | Zitong He, Xiaolin Ma, Ghulam Farid, Absar Ul Haq, Kahkashan Mahreen . Bounds of a unified integral operator for (s,m)-convex functions and their consequences. AIMS Mathematics, 2020, 5(6): 5510-5520. doi: 10.3934/math.2020353 |
[9] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[10] | Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094 |
Many researchers in recent years have studied fractional integrals and derivatives. Some authors recently introduced generalized fractional integrals, the so-called unified fractional integrals. In this article, we establish certain new integral inequalities by employing the unified fractional integral operators. In fact, for a class of n (n∈N), positive continuous and decreasing functions on [v1,v2], certain new classes of integral inequalities are discussed. The inequalities established in this manuscript are more general forms of the classical inequalities given in the literature. The existing classical inequalities can be rectified by imposing the conditions stated in remarks. By imposing certain conditions on ℏ and Λ available in the literature, many new forms of fractional integral inequalities can be produced.
Fractional calculus is presently primarily concerned with studying fractional-order integral and derivative functions over real and complex domains and their applications. Using arithmetic from classical analysis in the fractional analysis is critical in many cases for producing more realistic findings. Fractional order differential equations can handle a wide variety of mathematical models. Fractional mathematical models provide more comprehensive and accurate results than classical mathematical models because they are particular cases of fractional-order mathematical models. In classical analysis, integer orders are not a good model for nature. On the other hand, fractional computing allows us to look at any number of orders and come up with significantly more concrete objectives.
In [1,2,3,4,5], some researchers defined new fractional derivative operators by using exponential and Mittag-Leffler functions in the kernels. Such developments encourage further study into new concepts for combining fractional derivative and integral operators and obtaining fractional integral inequalities using these modified fractional derivatives and integral operators. In the theory of differential equations and applied mathematics, integral inequalities and their applications are crucial. Using the classical fractional integral, fractional derivative operators and their extensions, many different forms of classical integral inequalities and their modifications have been created [6,7,8,9,10,11,12,13].
Sarikaya and Budak investigated the (k,s)-Riemann-Liouville fractional integral and its applications in [14]. In [15], enlarged Hermite-Hadamard type inequalities are discovered using fractional integral operators. Agarwal et al. [16] used the k-fractional integrals operators to introduce Hermite-Hadamard type inequalities.
Using a family of n positive functions, Dahmani, in [17], presented certain classes of fractional integral inequalities. Using the (k,s)-fractional integral operators, the authors of [18] constructed fractional integral inequalities for a class of n (n∈N), positive continuous and decreasing functions on [a,b].
Using fractional conformable integrals, the authors [19,20,21,22] recently developed numerous forms of inequalities. In [29], Akin studied the boundedness and compactness of integral operators on time scales. Akin [30] established fractional maximal integrals to establish integral inequalities on time scales. New principles of non-linear integral inequalities are presented in time scales via diamond-α dynamic integrals and the nabla integral in [31]. Younus et al. [32] gave some new variants of Gronwall type inequalities on time scales. An interesting application of fractional integrals and differentials can be found in the works [33,34,35].
Definition 1.1. [23] Let Λ:[0,∞)→[0,∞) be the function satisfying the hypothesis given below:
∫10Λ(υ)υdυ<∞, | (1.1) |
1K≤Λ(ℏ1)Λ(ℏ2)≤K,12≤ℏ1ℏ2≤2, | (1.2) |
Λ(ℏ2)ℏ22≤LΛ(ℏ1)ℏ21,ℏ1≤ℏ2, | (1.3) |
|Λ(ℏ2)ℏ22−Λ(ℏ1)ℏ21|≤M|ℏ2−ℏ1|Λ(ℏ2)ℏ22,12≤ℏ1ℏ2≤2, | (1.4) |
where K,L,M>0 and are independent of ℏ1,ℏ2>0. If Λ(ℏ2)ℏσ2 is increasing for some σ>0, and Λ(ℏ2)ℏμ2 is decreasing for some μ>0, then Λ satisfies (1.1)–(1.4).
Definition 1.2. [25] Let the function ℏ be differentiable and strictly increasing on [v1,v2] and let the weighted function ω(θ)≠0 be defined on [v1,v2]. Let Xpω(v1,v2), 1≤p≤∞, be the space of all Lebesgue measurable functions defined on [v1,v2] for which ‖ℵ‖Xpω<∞ is
‖ℵ‖Xpω=(∫v2v1∣(ω(θ)ℵ(θ)∣)pℏ′(θ)dθ)1p,1≤p<∞, |
and
‖ℵ |X∞ω=esssupv1≤θ≤v2∣ω(θ)ℵ(θ)∣<∞. |
Note that ℵ∈Xpω(v1,v2)↔ω(θ)ℵ(θ)(ℏ′(θ))1p∈LP(v1,v2) for 1≤p<∞, and ℵ∈X∞ω(v1,v2)↔ω(θ)ℵ(θ)∈L∞(v1,v2).
Definition 1.3. [24] The unified weighted left and right sided integral operators are respectively given below:
(ℏωIΛv1+ℵ)(λ)=ω−1(λ)∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵ(υ)dυ,v1<λ, | (1.5) |
and
(ℏωIΛv2−ℵ)(λ)=ω−1(λ)∫v2λΛ(ℏ(υ)−ℏ(λ))ℏ(υ)−ℏ(λ)ω(υ)ℏ′(υ)ℵ(υ)dυ,v2>λ. | (1.6) |
Remark 1.1. Here, we discuss the following special cases of (1.5) and (1.6) by applying some specific conditions on ℏ and Λ.
(i) If we take Λ(ℏ(λ))=ℏ(λ), then unified weighted integrals (1.5) and (1.6) will become
(ℏωIv1+ℵ)(λ)=ω−1(λ)∫λv1ω(υ)ℏ′(υ)ℵ(υ)dυ,v1<λ, |
and
(ℏωIv2−ℵ)(λ)=ω−1(λ)∫v2λω(υ)ℏ′(υ)ℵ(υ)dυ,v2>λ, |
respectively.
(ii) If we take ℏ(λ)=λ, then the unified integrals (1.5) and (1.6) will become
(ℏωIv1+ℵ)(λ)=ω−1(λ)∫λv1Λ(λ−υ)λ−υω(υ)ℵ(υ)dυ,v1<λ, | (1.7) |
and
(ℏωIv2−ℵ)(λ)=ω−1(λ)∫v2λΛ(υ−λ)υ−λω(υ)ℵ(υ)dυ,v2>λ, | (1.8) |
respectively.
(iii) If we take Λ(ℏ(λ))=ℏ(λ)ζΓ(ζ), then (1.5) and (1.6) will lead to the following generalized Riemann-Liouville fractional integrals, respectively, as defined by[25].
(ℏωIζv1ℵ)(λ)=ω−1(λ)Γ(ζ)∫λv1(ℏ(λ)−ℏ(υ))ζ−1ω(υ)ℏ′(υ)ℵ(υ)dυ,v1<λ, | (1.9) |
and
(ℏωIζv2−ℵ)(λ)=ω−1(λ)Γ(ζ)∫v2λ(ℏ(υ)−ℏ(λ))ζ−1ω(υ)ℏ′(υ)ℵ(υ)dυ,v2>λ, | (1.10) |
where ζ,∈C with ℜ(ζ)>0.
(iv) If we take ℏ(λ)=λ and Λ(ℏ(λ))=λζΓ(ζ), then (1.5) and (1.6) reduce to the given weighted Riemann-Liouville fractional integrals, respectively:
(ωIζv1+ℵ)(λ)=ω−1(λ)Γ(ζ)∫λv1(λ−υ)ζ−1ω(υ)ℵ(υ)dυ,v1<λ, | (1.11) |
and
(ωIζv2−ℵ)(λ)=ω−1(λ)Γ(ζ)∫v2λ(υ−λ)ζ−1ω(υ)ℵ(υ)dυ,v2>λ. | (1.12) |
(v) If we take ℏ(λ)=lnλ and Λ(ℏ(λ))=(lnλ)ζΓ(ζ), then (1.5) and (1.6) will lead to the weighted Hadamard integrals given below:
(ωIζv1+ℵ)(λ)=ω−1(λ)Γ(ζ)∫λv1(lnλ−lnυ)ζ−1ω(υ)ℵ(υ)dυυ,v1<λ, | (1.13) |
and
(ωIζv2−ℵ)(λ)=ω−1(λ)Γ(ζ)∫v2λ(lnυ−lnλ)ζ−1ω(υ)ℵ(υ)dυυ,v2>λ. | (1.14) |
(vi) If we take ℏ(λ)=λη and Λ(ℏ(λ))=ληη, η>0, then (1.5) and (1.6) will become weighted Katugampola fractional integrals as follows:
(ωIζv1ℵ)(λ)=ω−1(λ)Γ(ζ)∫λv1(λη−υηη)ζ−1ω(υ)ℵ(υ)dυυ1−η,v1<λ, | (1.15) |
and
(ωIζv2ℵ)(λ)=ω−1(λ)Γ(ζ)∫v2λ(υη−ληη)ζ−1ω(υ)ℵ(υ)dυυ1−η,v2>λ. | (1.16) |
(vii) If we take ℏ(λ)=λ and Λ(ℏ(λ))=ληexp(−1−ηηλ), η∈(0,1), then (1.5) and (1.6) will reduce to the weighted fractional integrals given by
(ωIηv1+ℵ)(λ)=ω−1(λ)η∫λv1exp(−1−ηη(λ−υ))ω(υ)ℵ(υ),v1<λ, | (1.17) |
and
(ωIηv2−ℵ)(λ)=ω−1(λ)η∫v2λexp(−1−ηη(υ−λ))ω(υ)ℵ(υ)dυ,v2>λ. | (1.18) |
Remark 1.2. (i) If we take ω(λ)=1 and Λ(ℏ(λ))=ℏ(λ), then (1.5) and (1.6) will become
(ℏIv1+ℵ)(λ)=∫λv1ℏ′(υ)ℵ(υ)dυ,v1<λ, |
and
(ℏIv2−ℵ)(λ)=∫v2λℏ′(υ)ℵ(υ)dυ,v2>λ, |
respectively.
(ii) If we take ω(λ)=1, then (1.5) and (1.6) will lead to the unified integrals defined by [26] as follows:
(ℏIΛv1+ℵ)(λ)=∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ℏ′(υ)ℵ(υ)dυ,v1<λ, | (1.19) |
and
(ℏIΛv2−ℵ)(λ)=∫v2λΛ(ℏ(υ)−ℏ(λ))ℏ(υ)−ℏ(λ)ℏ′(υ)ℵ(υ)dυ,v2>λ. | (1.20) |
(iii) If we take ω(λ)=1 and ℏ(λ)=λ, then (1.5) and (1.6) will reduce to the fractional integrals defined by [27] as follows:
(IΛv1+ℵ)(λ)=∫λv1Λ(λ−υ)λ−υℵ(υ)dυ,v1<λ, | (1.21) |
and
(ℏIΛv2−ℵ)(λ)=∫v2λΛ(υ−λ)υ−λℵ(υ)dυ,v2>λ. | (1.22) |
(iv) [28,36] If we put ω(λ)=1 and Λ(ℏ(λ))=ℏ(λ)ζΓ(ζ), then (1.5) and (1.6) will become generalized Riemann-Liouville fractional integrals as follows:
(ℏIζv1ℵ)(λ)=1Γ(ζ)∫λv1(ℏ(λ)−ℏ(υ))ζ−1ℏ′(υ)ℵ(υ)dυ,v1<λ, | (1.23) |
and
(ℏIζv2−ℵ)(λ)=1Γ(ζ)∫v2λ(ℏ(υ)−ℏ(λ))ζ−1ℏ′(υ)ℵ(υ)dυ,v2>λ, | (1.24) |
where ζ,∈C with ℜ(ζ)>0.
(v) If we take ω(λ)=1, ℏ(λ)=λ and Λ(ℏ(λ))=λζΓ(ζ), then (1.5) and (1.6) will reduce to the following Riemann-Liouville fractional integrals
(Iζv1+ℵ)(λ)=1Γ(ζ)∫λv1(λ−υ)ζ−1ℵ(υ)dυ,v1<λ, | (1.25) |
and
(Iζv2−ℵ)(λ)=1Γ(ζ)∫v2λ(υ−λ)ζ−1ℵ(υ)dυ,v2>λ, | (1.26) |
(vi) If we take ω(λ)=1, ℏ(λ)=lnλ and Λ(ℏ(λ))=(lnλ)ζΓ(ζ), then (1.5) and (1.6) will respectively become the following Hadamard integrals [28,36].
(Iζv1+ℵ)(λ)=1Γ(ζ)∫λv1(lnλ−lnυ)ζ−1ℵ(υ)dυυ,v1<λ, |
and
(Iζv2−ℵ)(λ)=1Γ(ζ)∫v2λ(lnυ−lnλ)ζ−1ℵ(υ)dυυ,v2>λ. |
(vii) If we take ω(λ)=1, ℏ(λ)=λη and Λ(ℏ(λ))=ληη, η>0, then (1.5) and (1.6) will become Katugampola [37] integrals as follows:
(Iζv1ℵ)(λ)=1Γ(ζ)∫λv1(λη−υηη)ζ−1ℵ(υ)dυυ1−η,v1<λ, |
and
(Iζv2ℵ)(λ)=1Γ(ζ)∫v2λ(υη−ληη)ζ−1ℵ(υ)dυυ1−η,v2>λ. |
(viii) If we take ω(λ)=1, ℏ(λ)=λ and Λ(ℏ(λ))=ληexp(−1−ηηλ), η∈(0,1), then (1.5) and (1.6) reduce to the integrals given below:
(Iηv1+ℵ)(λ)=1η∫λv1exp(−1−ηη(λ−υ))ℵ(υ),v1<λ, |
and
(Iηv2−ℵ)(λ)=1η∫v2λexp(−1−ηη(υ−λ))ℵ(υ)dυ,v2>λ, |
respectively. Similarly, (1.5) and (1.6) will reduce to the integrals introduced by [22,38,39,40].
The main motivation of this paper is to establish certain new integral inequalities by employing the unified fractional integral operators. In fact, for a class of n (n∈N) positive, continuous and decreasing functions on [v1,v2], certain new classes of integral inequalities will be discussed. The inequalities obtained in this manuscript are more general forms of the classical inequalities given in the literature. The existing classical inequalities can be rectified by imposing the conditions stated in remarks. By imposing certain conditions on ℏ and Λ available in the literature, many new forms of fractional integral inequalities can be produced. It is expected that the ideas and techniques of the paper will inspire interested readers.
In this section, we utilize the weighted integral (1.5) to obtain the refinement of some classical inequalities. Throughout the paper, we let the function ℏ be an increasing and positive function on [v1,v2] with a continuous derivative ℏ′ on (v1,v2). To do this, first we prove that the operators defined by (1.5) and (1.6) are bounded.
Theorem 2.1. Let the functions Λ,ℵ:[v1,v2]→R, 0<v1<v2, be positive and integrable functions. Let ℏ:[v1,v2]→R be a positive, increasing function having a continuous derivative on (v1,v2). If Λλ is increasing on [v1,v2], then for λ∈[v1,v2], we have
ω−1(λ)∣∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵ(υ)dυ∣≤ω−1(λ)Λ(ℏ(v2)−ℏ(v1))||ℵ||Xpω |
and
ω−1(λ)∣∫v2λΛ(ℏ(υ)−ℏ(λ))ℏ(υ)−ℏ(λ)ω(υ)ℏ′(υ)ℵ(υ)dυ∣≤ω−1(λ)Λ(ℏ(v2)−ℏ(v1))||ℵ||Xpω. |
Furthermore, one can get
ω−1(λ)∣∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵ(υ)dυ∣+ω−1(λ)∣∫v2λΛ(ℏ(υ)−ℏ(λ))ℏ(υ)−ℏ(λ)ω(υ)ℏ′(υ)ℵ(υ)dυ∣≤2ω−1(λ)Λ(ℏ(v2)−ℏ(v1))||ℵ||Xpω. |
Proof. By the given hypothesis, ℏ is increasing, and therefore for υ∈[v1,λ), λ∈[v1,v2], ℏ(λ)−ℏ(υ)≤ℏ(λ)−ℏ(v1). Also, since the function Λλ is increasing, we have
Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)≤Λ(ℏ(λ)−ℏ(v1))ℏ(λ)−ℏ(v1). | (2.1) |
By the given hypothesis, ℵ and ω are positive functions, and ℏ is increasing and differentiable. Therefore, from (2.1), it follows that
Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵ(υ)≤Λ(ℏ(λ)−ℏ(v1))ℏ(λ)−ℏ(v1)ω(υ)ℏ′(υ)ℵ(υ). | (2.2) |
From this, the following inequality can be easily obtained
ω−1(λ)∣∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵ(υ)dυ∣≤ω−1(λ)Λ(ℏ(λ)−ℏ(v1))∣∣ℵ∣∣Xpω. | (2.3) |
Similarly, one can get
ω−1(λ)∣∫v2λΛ(ℏ(υ)−ℏ(λ))ℏ(υ)−ℏ(λ)ω(υ)ℏ′(υ)ℵ(υ)dυ∣≤ω−1(λ)Λ(ℏ(v2)−ℏ(v1))∣∣ℵ∣∣Xpω. | (2.4) |
Finally, by adding (2.3) and (2.4), we get the last inequality.
Theorem 2.2. Suppose that the function ℵ is a positive, continuous and decreasing function on [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γ>0. Then, for generalized integral operator (1.5), we have
ℏωIΛv1+[ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)]≥ℏωIΛv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΛv1+[(λ−v1)ϑ1ℵγ(λ)]. | (2.5) |
Proof. Since ℵ is a positive, continuous and decreasing functions on the interval [v1,v2], we have
((ρ−v1)ϑ1−(υ−v1)ϑ1)(ℵσ−γ(υ)−ℵσ−γ(ρ))≥0, | (2.6) |
where v1<λ≤v2, ϑ1>0, σ≥γ>0, and υ,ρ∈[v1,λ].
By (2.6), we have
(ρ−v1)ϑ1ℵσ−γ(υ)+(υ−v1)ϑ1ℵσ−γ(ρ)−(ρ−v1)ϑ1ℵσ−γ(ρ)−(υ−v1)ϑ1ℵσ−γ(υ)≥0. | (2.7) |
Define a function
G(λ,υ):=Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ). | (2.8) |
We observe that the function G(λ,υ) remains positive for all υ∈(v1,λ) and v1<υ<λ≤v2, as each term of the above function is positive in view of the conditions stated in Theorem 2.2. Therefore, multiplying (2.7) by
G(λ,υ)ℵγ(υ)=Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵγ(υ), |
for υ∈(v1,λ) and v1<λ≤v2, we have
G(λ,υ)[(ρ−v1)ϑ1ℵσ−γ(υ)+(υ−v1)ϑ1ℵσ−γ(ρ)−(ρ−v1)ϑ1ℵσ−γ(ρ)−(υ−v1)ϑ1ℵσ−γ(υ)]ℵγ(υ)=(ρ−v1)ϑ1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵγ(υ)ℵσ−γ(υ)+(υ−v1)ϑ1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵγ(t)ℵσ−γ(ρ)−(ρ−v1)ϑ1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵγ(υ)ℵσ−γ(ρ)−(υ−v1)ϑ1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵγ(υ)ℵσ−γ(υ)≥0. | (2.9) |
Integrating (2.9) with respect to υ over (v1,λ), we have
(ρ−v1)ϑ1∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵσ(υ)dυ+ℵσ−γ(ρ)∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)(υ−v1)ϑ1ℵγ(υ)dυ−(ρ−v1)ϑ1ℵσ−γ(ρ)∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵγ(υ)dυ−∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)(υ−v1)ϑ1ℵσ(υ)dυ≥0. | (2.10) |
Multiplying (2.10) by 1ω(λ), we get
(ρ−v1)ϑ1ℏωIΛv1+[ℵσ(λ)]+ℵσ−γ(ρ)ℏωIΛv1+[(λ−v1)ϑ1ℵγ(θ)]−(ρ−v1)ϑ1ℵσ−γ(ρ)ℏωIΛv1+[ℵγ(λ)]−ℏωIΛv1+[(λ−v1)ϑ1ℵσ(λ)]. | (2.11) |
Multiplying (2.11) by
G(λ,ρ)ℵγ(ρ)=Λ(ℏ(λ)−ℏ(ρ))ℏ(λ)−ℏ(ρ)ω(ρ)ℏ′(ρ)ℵγ(ρ) |
for ρ∈(v1,λ) and v1<λ≤v2, and integrating the resultant identity with respect to ρ over (v1,λ), we get
ℏωIΛv1+[ℵσ(λ)]ℏωIΛv1+[(λ−v1)ϑ1ℵγ(λ)]−ℏωIΛv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)]≥0. |
It follows that
ℏωIΛv1+[ℵσ(λ)]ℏωIΛv1+[(λ−v1)ϑ1ℵγ(λ)]≥ℏωIΛv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)]. |
Dividing the above equation by ℏωIΛv1+[(λ−v1)ϑ1ℵγ(λ)]ℏωIΛv1+[ℵγ(λ)], we get the desired inequality (2.5).
Remark 2.1. If ℵ is increasing on [v1,v2], then the inequality in Theorem 2.2 will reverse.
Remark 2.2. If we take ω(λ)=1, ℏ(λ)=λ and Λ(ℏ(λ))=λζΓ(ζ), then Theorem 2.2 will reduce to Riemann-Liouville fractional integrals.
Remark 2.3. If we take ω(λ)=1, ℏ(λ)=λ, λ=v2 and Λ(ℏ(λ))=λ, then Theorem 2.2 will reduce to Theorem 3, proved earlier by Liu et al. [8].
Example 2.1. The special case of Theorem 2.2 is by taking ω(λ)=1, ℏ(λ)=λ, Λ(ℏ(λ))=λ, σ=2, γ=ϑ=1 and ℵ(υ)=2−υ, which is positive, continuous and decreasing on [0,1], and then we have
∫10ℵ2(υ)dυ∫10ℵ(υ)dυ≥∫10υℵ2(υ)dυ∫10υℵ(υ)dυi.e., 4.666>1.375. |
Theorem 2.3. Suppose that the function ℵ is a positive, continuous and decreasing function on [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γ>0. Then, for generalized fractional integral (1.5), we have
ℏωIΛv1+[ℵσ(λ)]ℏωIΦv1+[(λ−v1)ϑ1ℵγ(λ)]+ℏωIΦv1+[ℵσ(λ)]ℏωIΛv1+[(λ−v1)ϑ1ℵγ(λ)]ℏωIΛv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΦv1+[ℵγ(λ)]+ℏωIΦv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)]≥1. | (2.12) |
Proof. By multiplying both sides of (2.11) by
G(λ,ρ)ℵγ(ρ)=Φ(ℏ(λ)−ℏ(ρ))ℏ(λ)−ℏ(ρ)ω(ρ)ℏ′(ρ)ℵγ(ρ) |
for ρ∈(v1,λ) and v1<λ≤v2, and integrating the resultant identity with respect to ρ over (v1,λ), we get
ℏωIΛv1+[ℵσ(x)]ℏωIΦv1+[(λ−v1)ϑ1ℵγ(λ)]+ℏωIΦv1+[ℵσ(λ)]ℏωIΛv1+[(λ−v1)ϑ1ℵγ(λ)]−ℏωIΛv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΦv1+[ℵγ(λ)]−ℏωIΦv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)]≥0. |
It follows that
ℏωIΛv1+[ℵσ(x)]ℏωIΦv1+[(λ−v1)ϑ1ℵγ(λ)]+ℏωIΦv1+[ℵσ(λ)]ℏωIΛv1+[(λ−v1)ϑ1ℵγ(λ)]≥ℏωIΛv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΦv1+[ℵγ(λ)]+ℏωIΦv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)]. | (2.13) |
Hence, dividing (2.13) by
ℏωIΛv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΦv1+[ℵγ(λ)]+ℏωIΦv1+[(λ−v1)ϑ1ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)] |
completes the proof.
Remark 2.4. Applying Theorem 2.3 for Λ=Φ, we get Theorem 2.2.
Theorem 2.4. Suppose that the functions ℵ and h1 are positive and continuous on [v1,v2] such that h1 is increasing and ℵ is decreasing on the interval [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γ>0. Then, for generalized fractional integral (1.5), we have
ℏωIΛv1+[ℵσ(λ)]ℏωIΛv1+[hϑ1(λ)ℵγ(λ)]ℏωIΛv1+[hϑ1(λ)ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)]≥1. | (2.14) |
Proof. By the hypothesis given in Theorem 2.4, we can write
(hϑ1(ρ)−hϑ1(υ))(ℵσ−γ(υ)−ℵσ−γ(ρ))≥0, | (2.15) |
where v1<λ≤v2,ϑ1>0,σ≥γ>0, and υ,ρ∈[v1,λ].
From (2.15), we have
hϑ1(ρ)ℵσ−γ(υ)+hϑ1(υ)ℵσ−γ(ρ)−hϑ1(ρ)ℵσ−γ(ρ)−hϑ1(υ)ℵσ−γ(υ)≥0. | (2.16) |
Multiplying both sides of (2.16) by
G(λ,υ)ℵγ(υ)=Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵγ(υ) |
for υ∈(v1,λ) and v1<λ≤v2, we have
G(λ,υ)ℵγ(υ)[hϑ1(ρ)ℵσ−γ(υ)+hϑ1(υ)ℵσ−γ(ρ)−hϑ1(ρ)ℵσ−γ(ρ)−hϑ1(υ)ℵσ−γ(υ)]=hϑ1(ρ)Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵσ(υ)+hϑ1(υ)Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵσ−γ(ρ)ℵσ(υ)−hϑ1(ρ)Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵσ−γ(ρ)ℵσ(υ)−hϑ1(υ)ϑ1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵσ(υ)≥0. | (2.17) |
Integrating (2.17) with respect to υ over (v1,λ), we have
hϑ1(ρ)∫xaΛ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵσ(υ)dυ+ℵσ−γqq(ρ)∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)hϑ1(υ)ℵγ(υ)dυ−hϑ1(ρ)ℵσ−γ(ρ)∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)ℵγ(υ)dυ−∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)hϑ1(υ)ℵσ(υ)dυ≥0. | (2.18) |
Multiplying (2.18) by 1ω(λ) and in view of (1.5), we can write
hϑ1(ρ)ℏωIΛv1+[ℵσ(λ)]+ℵσ−γ(ρ)ℏωIΛv1+[hϑ1(λ)ℵγ(λ)]−hϑ1(ρ)ℵσ−γ(ρ)ℏωIΛv1+[ℵγ(λ)]−ℏωIΛv1+[hϑ1(λ)ℵγ(λ)]≥0. | (2.19) |
Again, multiplying (2.19) by
G(λ,ρ)ℵγ(ρ)=Λ(ℏ(λ)−ℏ(ρ))ℏ(λ)−ℏ(ρ)ω(ρ)ℏ′(ρ)ℵγ(ρ) |
for ρ∈(v1,λ) and v1<λ≤v2, and integrating the resultant identity with respect to ρ over (v1,λ), we get
ℏωIΛv1+[ℵσ(λ)]ℏωIΛv1+[hϑ1(λ)ℵγ(λ)]−ℏωIΛv1+[hϑ1(λ)ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)]≥0. |
This can be written as
ℏωIΛv1+[ℵσ(λ)]ℏωIΛv1+[hϑ1(λ)ℵγ(λ)]geqℏωIΛv1+[hϑ1(λ)ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)], |
which completes the desired inequality (2.14) of Theorem 2.4.
Theorem 2.5. Suppose that the functions ℵ and h1 are positive and continuous on [v1,v2] such that h1 is increasing and ℵ is decreasing on the interval [v1,v2]. Let v1<x≤v2,ϑ1>0, and σ≥γ>0. Then, for generalized integral (1.5), we have
ℏωIΛv1+[ℵσ(λ)]ℏωIΦv1+[hϑ1(λ)ℵγ(λ)]+ℏωIΦv1+[ℵσ(λ)]ℏωIΛv1+[hϑ1(λ)ℵγ(λ)]ℏωIΛv1+[hϑ1(λ)ℵσ(λ)]ℏωIΦv1+[ℵγ(λ)]+ℏωIΦv1+[hϑ1(λ)ℵσ(λ)]ℏωIΛv1+[ℵγλ)]≥1. | (2.20) |
Proof. Multiplying (2.19) by
G(λ,ρ)ℵγ(ρ)=Φ(ℏ(λ)−ℏ(ρ))ℏ(λ)−ℏ(ρ)ω(ρ)ℏ′(ρ)ℵγ(ρ) |
for ρ∈(v1,λ) and v1<λ≤v2, and integrating the resultant identity with respect to ρ over (v1,λ), we get
ℏωIΛv1+[ℵσ(λ)]ℏωIΦv1+[hϑ1(λ)ℵγ(λ)]+ℏωIΦv1+[ℵσ(λ)]ℏωIΛv1+[hϑ1(λ)ℵγ(λ)]−ℏωIΛv1+[hϑ1(λ)ℵσ(λ)]ℏωIΦv1+[ℵγ(λ)]−ℏωIΦv1+[hϑ1(λ)ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)]≥0. |
It follows that
ℏωIΛv1+[ℵσ(λ)]ℏωIΦv1+[hϑ1(λ)ℵγ(λ)]+ℏωIΦv1+[ℵσ(λ)]ℏωIΛv1+[hϑ1(λ)ℵγ(λ)]≥ℏωIΛv1+[hϑ1(λ)ℵσ(λ)]ℏωIΦv1+[ℵγ(λ)]+ℏωIΦv1+[hϑ1(λ)ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)]. |
Dividing both sides by
ℏωIΛv1+[hϑ1(λ)ℵσ(λ)]ℏωIΦv1+[ℵγ(λ)]+ℏωIΦv1+[hϑ1(λ)ℵσ(λ)]ℏωIΛv1+[ℵγ(λ)] |
gives the desired inequality (2.20).
Remark 2.5. Taking Λ=Φ in Theorem 2.5, we get Theorem 2.4.
In this section, we utilize the left unified integral operator (1.5) to establish some inequalities for a class of decreasing positive functions.
Theorem 3.1. Suppose that the functions (ℵl)l=1,2,3,…,n be n positive, continuous and decreasing functions on [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γq>0 for any fixed q∈{1,2,3,…,n}. Then, for generalized fractional integral operator (1.5), we have
ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)]≥ℏωIΛv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)]. | (3.1) |
Proof. Since (ℵl)l=1,2,3,…,n are n positive, continuous and decreasing functions on the interval [v1,v2], we have
((ρ−v1)ϑ1−(υ−v1)ϑ1)(ℵσ−γqq(υ)−ℵσ−γqq(ρ))≥0 | (3.2) |
for any fixed q∈{1,2,3,…,n},v1<λ≤v2,ϑ1>0,σ≥γq>0 and υ,ρ∈[v1,λ]. By (3.2), we have
(ρ−v1)ϑ1ℵσ−γqq(υ)+(υ−v1)ϑ1ℵσ−γqq(ρ)≥(ρ−v1)ϑ1ℵσ−γqq(ρ)+(υ−v1)ϑ1ℵσ−γqq(υ). | (3.3) |
Multiplying both sides of (3.3) by
G(λ,υ)n∏l=1ℵγll(υ)=Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(t) |
for ρ∈(v1,λ) and v1<λ≤v2, we have
G(λ,υ)[(ρ−v1)ϑ1ℵσ−γ(υ)+(υ−a)ϑ1ℵσ−γ(ρ)−(ρ−v1)ϑ1ℵσ−γ(ρ)−(υ−v1)ϑ1ℵσ−γ(υ)]n∏l=1ℵγll(υ)=(ρ−v1)ϑ1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(t)ℵσ−γqq(υ)+(υ−v1)ϑ1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)ℵσ−γqq(ρ)≥(ρ−v1)ϑ1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)ℵσ−γqq(ρ)+(υ−v1)ϑ1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)ℵσ−γqq(υ). | (3.4) |
Integrating (3.4) with respect to υ over (v1,λ), we have
(ρ−v1)ϑ1∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(t)ℵσ−γqq(υ)dυ+ℵσ−γqq(ρ)∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)dυ≥(ρ−v1)ϑ1ℵσ−γqq(ρ)∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)dυ+∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)(υ−v1)ϑ1n∏l=1ℵγll(υ)ℵσ−γqq(υ)dυ. |
In view of (1.5), it follows that
(ρ−v1)ϑ1ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]+ℵσ−γqq(ρ)ℏωIΛv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)]≥(ρ−v1)ϑ1ℵσ−γqq(ρ)ℏωIΛv1+[n∏l=1ℵγll(λ)]−ℏωIΛv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]. | (3.5) |
Again, multiplying both sides of (3.5) by
G(λ,ρ)n∏l=1ℵγll(ρ)=Λ(ℏ(λ)−ℏ(ρ))ℏ(λ)−ℏ(ρ)ω(ρ)ℏ′(ρ)n∏l=1ℵγll(ρ) |
for ρ∈(v1,λ) and v1<λ≤v2, and integrating the resultant identity with respect to ρ over (v1,λ), we get
ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)]≥ℏωIΛv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)], |
which gives the required inequality (3.1).
Remark 3.1. If we consider that (ℵl)l=1,2,3,…,n are increasing functions on [v1,v2], then the inequality in Theorem 3.1 will reverse.
Remark 3.2. If we take ω(λ)=1, ℏ(λ)=λ and Λ(ℏ(λ))=λζΓ(ζ), then Theorem 3.1 will reduce to the result proved by Dahmani [17].
Remark 3.3. If we take ω(λ)=1, ℏ(λ)=λ, λ=v2, n=1 and Λ(ℏ(λ))=λ, then Theorem 3.1 will reduce to Theorem 3, proved earlier by Liu et al. [8].
Theorem 3.2. Suppose that the functions (ℵl)l=1,2,3,…,n are n positive, continuous and decreasing functions on [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γq>0 for any fixed q∈{1,2,3,…,n}. Then, for generalized fractional integral (1.5), we have
ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)]+ℏωIΦv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)]ℏωIΛv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[n∏l=1ℵγll(λ)]+ℏωIΦv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)]≥1. | (3.6) |
Proof. Multiplying both sides of (3.5) by
G(λ,ρ)n∏l=1ℵγll(ρ)=Φ(ℏ(λ)−ℏ(ρ))ℏ(λ)−ℏ(ρ)ω(ρ)ℏ′(ρ)n∏l=1ℵγll(ρ) |
for ρ∈(v1,λ) and v1<λ≤v2, and integrating the resultant identity with respect to ρ over (v1,λ), we get
ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)]+ℏωIΦv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)]≥ℏωIΛv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[n∏l=1ℵγll(λ)]+ℏωIΦv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)]. | (3.7) |
It follows that
ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)]+ℏωIΦv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)]≥ℏωIΛv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[n∏l=1ℵγll(λ)]+ℏωIΦv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)]. | (3.8) |
Hence, dividing (3.8) by
ℏωIΛv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[n∏l=1ℵγll(λ)]+ℏωIΦv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)] |
completes the proof.
Remark 3.4. Applying Theorem 3.2 for Λ=Φ, we get Theorem 3.1.
Theorem 3.3. Suppose that the functions (ℵl)l=1,2,3,…,n and h1 are positive and continuous on [v1,v2] such that h1 is increasing and (ℵl)l=1,2,3,…,n are decreasing on [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γq>0 for any fixed q∈{1,2,3,…,n}. Then, for generalized fractional integral (1.5), we have
ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[hϑ1(λ)n∏l=1ℵγll(λ)]ℏωIΛv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)]≥1. | (3.9) |
Proof. Under the hypothesis given in Theorem 3.3, we can write
(hϑ1(ρ)−hϑ1(υ))(ℵσ−γqq(υ)−ℵσ−γqq(ρ))≥0 | (3.10) |
for any fixed q∈{1,2,3,…,n},v1<λ≤v2,ϑ1>0,σ≥γq>0 and υ,ρ∈[v1,λ].
From (3.10), we can write
hϑ1(ρ)ℵσ−γqq(υ)+hϑ1(υ)ℵσ−γqq(ρ)−hϑ1(ρ)ℵσ−γqq(ρ)−hϑ1(υ)ℵσ−γqq(υ)≥0. | (3.11) |
Multiplying (3.11) by
G(λ,υ)n∏l=1ℵγll(υ)=Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ) |
for υ∈(v1,λ) and v1<λ≤v2, we have
hϑ1(ρ)Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)ℵσ−γqq(υ)+hϑ1(υ)Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)ℵσ−γqq(ρ)−hϑ1(ρ)Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)ℵσ−γqq(ρ)−hϑ1(υ)ϑ1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)ℵσ−γqq(υ)≥0. | (3.12) |
Integrating (3.12) with respect to υ over (v1,λ), we have
hϑ1(ρ)∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)ℵσ−γqq(υ)dυ+ℵσ−γqq(ρ)∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)hϑ1(υ)ϑ1n∏l=1ℵγll(υ)dυ−hϑ1(ρ)ℵσ−γqq(ρ)∫λv1Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(υ)dυ−∫λv1hϑ1(υ)n∏l=1ℵγll(υ)ℵσ−γqq(υ)dυ≥0. | (3.13) |
In view of (1.5), we can write from (3.13)
hϑ1(ρ)ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]+ℵσ−γqq(ρ)ℏωIΛv1+[hϑ1(λ)n∏l=1ℵγll(λ)]−hϑ1(ρ)ℵσ−γqq(ρ)ℏωIΛv1+[n∏l=1ℵγll(λ)]−ℏωIΛv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]≥0. | (3.14) |
Again, multiplying (3.14) by
G(λ,ρ)n∏l=1ℵγll(ρ)=Λ(ℏ(λ)−ℏ(υ))ℏ(λ)−ℏ(υ)ω(υ)ℏ′(υ)n∏l=1ℵγll(ρ) |
for ρ∈(v1,λ) and v1<λ≤v2, and integrating the resultant identity with respect to ρ over (a,x), we get
ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[hϑ1(λ)n∏l=1ℵγll(λ)]−ℏωIΛv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)]≥0, |
which gives the required inequality (3.9).
Theorem 3.4. Suppose that the functions (ℵl)l=1,2,3,…,n and h1 are positive and continuous on [v1,v2] such that h1 is increasing and (ℵl)l=1,2,3,…,n are decreasing on the interval [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γq>0 for any fixed q∈{1,2,3,…,n}. Then, for generalized fractional integral (1.5), we have
ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[hϑ1(λ)n∏l=1ℵγll(λ)]+ℏωIΦv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[hϑ1(λ)n∏l=1ℵγll(λ)]ℏωIΛv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[n∏l=1ℵγll(λ)]+ℏωIΦv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)]≥1. | (3.15) |
Proof. Multiplying (3.14) by
G(λ,ρ)n∏l=1ℵγll(ρ)=Φ(ℏ(λ)−ℏ(ρ))ℏ(λ)−ℏ(ρ)ω(ρ)ℏ′(ρ)n∏l=1ℵγll(ρ) |
for ρ∈(v1,λ) and v1<λ≤v2, and integrating the resultant identity with respect to ρ over (v1,λ), we get
ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[hϑ1(λ)n∏l=1ℵγll(λ)]+ℏωIΦv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[hϑ1(λ)n∏l=1ℵγll(λ)]−ℏωIΛv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[n∏l=1ℵγll(λ)]−ℏωIΦv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)]≥0. |
This can be written as
ℏωIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[hϑ1(λ)n∏l=1ℵγll(λ)]+ℏωIΦv1+[n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[hϑ1(λ)n∏l=1ℵγll(λ)]≥ℏωIΛv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[n∏l=1ℵγll(λ)]+ℏωIΦv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)]. |
Dividing both sides by
ℏωIΛv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]ℏωIΦv1+[n∏l=1ℵγll(λ)]+ℏωIΦv1+[hϑ1(λ)n∏l≠qℵγllℵσq(λ)]ℏωIΛv1+[n∏l=1ℵγll(λ)] |
gives the desired inequality (3.15).
Remark 3.5. Applying Theorem 3.4 for Λ=Φ, we get Theorem 3.3. Similarly, we can establish the inequalities for the right generalized proportional fractional integral defined by (1.6).
By using our main results, we get the following certain new and well-known inequalities in terms of well-known fractional integral operators:
Corollary 4.1. Suppose that the function ℵ is a positive, continuous and decreasing function on [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γ>0. Then, for generalized integral operator (1.7) (see, for example, [27]), we have
IΛv1+[ℵσ(λ)]IΛv1+[ℵγ(λ)]≥IΛv1+[(λ−v1)ϑ1ℵσ(λ)]IΛv1+[(λ−v1)ϑ1ℵγ(λ)]. |
Proof. Taking ω=1, ℏ(λ)=λ and Λ(ℏ(λ))=λ in Theorem 2.2, we get the desired result.
Corollary 4.2. Suppose that the functions (ℵl)l=1,2,3,…,n are n positive, continuous and decreasing on [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γq>0 for any fixed q∈{1,2,3,…,n}. Then, for generalized fractional integral operator (1.7), we have
IΛv1+[n∏l≠qℵγllℵσq(λ)]IΛv1+[n∏l=1ℵγll(λ)]≥IΛv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]IΛv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)]. |
Proof. Taking ω=1, ℏ(λ)=λ and Λ(ℏ(λ))=λ in Theorem 3.1, one can get the desired result.
Similarly, by taking ω=1 in Theorems 2.2 and 3.1, one can get results for the fractional integral defined by Farid [26] as follows:
Corollary 4.3. Suppose that the function ℵ is a positive, continuous and decreasing function on [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γ>0. Then, for generalized integral operator (1.19), we have
ℏIΛv1+[ℵσ(λ)]ℏIΛv1+[ℵγ(λ)]≥ℏIΛv1+[(λ−v1)ϑ1ℵσ(λ)]ℏIΛv1+[(λ−v1)ϑ1ℵγ(λ)]. |
Corollary 4.4. Suppose that the functions (ℵl)l=1,2,3,…,n are n positive, continuous and decreasing on [v1,v2]. Let v1<λ≤v2,ϑ1>0, and σ≥γq>0 for any fixed q∈{1,2,3,…,n}. Then, for generalized fractional integral operator (1.19), we have
ℏIΛv1+[n∏l≠qℵγllℵσq(λ)]ℏIΛv1+[n∏l=1ℵγll(λ)]≥ℏIΛv1+[(λ−v1)ϑ1n∏l≠qℵγllℵσq(λ)]ℏIΛv1+[(λ−v1)ϑ1n∏l=1ℵγll(λ)], |
where ℏ is a differentiable, increasing and continuous function on [v1,v2].
In this present investigation, we generalized many classical inequalities discussed in the literature via unified fractional integrals and proved that the operators defined in (1.5) and (1.6) are bounded. We developed certain new classes of unified fractional integral inequalities for a class of n (n∈N) positive, continuous and decreasing functions on [v1,v2]. Certain special cases of the main result are discussed in Section 4. By applying specific conditions on ℏ and Λ as given in the literature, we can produce certain new classes of inequalities as discussed in Remark 1.1. We hope that our ideas and techniques of this paper will inspire interested readers working in this field.
This research has received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.
The authors declare no conflict of interest.
[1] |
T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 2017 (2017), 78. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1
![]() |
[2] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9
![]() |
[3] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel, theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
![]() |
[4] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[5] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
[6] |
Z. Dahmani, L. Tabharit, On weighted Grüss-type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31–38. https://doi.org/10.5373/jarpm.392.032110 doi: 10.5373/jarpm.392.032110
![]() |
[7] | Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497. |
[8] |
W. Liu, Q. A. Ngǒ, V. N. Huy, Several interesting integral inequalities, J. Math. Inequ., 3 (2009), 201–212. https://doi.org/10.7153/jmi-03-20 doi: 10.7153/jmi-03-20
![]() |
[9] |
K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, M. Arshad, Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl., 2018 (2018), 135. https://doi.org/10.1186/s13660-018-1717-8 doi: 10.1186/s13660-018-1717-8
![]() |
[10] |
K. S. Nisar, G. Rahman, J. Choi, S. Mubeen, M. Arshad, Certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249–263. https://doi.org/10.7858/eamj.2018.018 doi: 10.7858/eamj.2018.018
![]() |
[11] |
M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, (k,s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77–89. https://doi.org/10.15672/HJMS.20164512484 doi: 10.15672/HJMS.20164512484
![]() |
[12] |
E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34. https://doi.org/10.1016/j.amc.2015.07.026 doi: 10.1016/j.amc.2015.07.026
![]() |
[13] |
G. Rahman, K. S. Nisar, S. Mubeen, J. Choi, Certain Inequalities involving the (k,ρ)-fractional integral operator, Far East J. Math. Sci., 103 (2018), 1879–1888. https://doi.org/10.17654/MS103111879 doi: 10.17654/MS103111879
![]() |
[14] |
M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Am. Math. Soc., 145 (2017), 1527–1538. https://doi.org/10.1090/proc/13488 doi: 10.1090/proc/13488
![]() |
[15] |
E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 169 (2017), 10. https://doi.org/10.1186/s13660-017-1444-6 doi: 10.1186/s13660-017-1444-6
![]() |
[16] |
P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 55 (2017), 10. https://doi.org/10.1186/s13660-017-1318-y doi: 10.1186/s13660-017-1318-y
![]() |
[17] | Z. Dahmani, New classes of integral inequalities of fractional order, Le Matematiche, 69 (2014), 237–247. |
[18] |
M. Aldhaifallah, M. Tomar, K. S. Nisar, S. D. Purohit, Some new inequalities for (k,s)-fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 5374–5381. https://doi.org/10.22436/jnsa.009.09.06 doi: 10.22436/jnsa.009.09.06
![]() |
[19] |
G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, AIMS Math., 3 (2018), 575–583. https://doi.org/10.3934/Math.2018.4.575 doi: 10.3934/Math.2018.4.575
![]() |
[20] | C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of Hermite-Hadamard type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), 1–9. |
[21] |
F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614. https://doi.org/10.3390/sym10110614 doi: 10.3390/sym10110614
![]() |
[22] | S. Mubeen, G. M. Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[23] | M. Z. Sarikaya, H. Yildirim, On generalization of the Riesz potential, Indian J. Math. Math. Sci., 3 (2007), 231–235. |
[24] |
G. Rahman, A. Hussain, A. Ali, K. S. Nisar, R. N. Mohamed, More general weighted-type fractional integral inequalities via Chebyshev functionals, Fractal Fract., 5 (2021), 232. https://doi.org/10.3390/fractalfract5040232 doi: 10.3390/fractalfract5040232
![]() |
[25] |
F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28 (2020), 2040011. https://doi.org/10.1142/S0218348X20400113 doi: 10.1142/S0218348X20400113
![]() |
[26] |
G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci., 3 (2019), 210–216. https://doi.org/10.30538/oms2019.0064 doi: 10.30538/oms2019.0064
![]() |
[27] | M. Z. Sarikaya, F. Ertuǧral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova Math. Comput. Sci. Ser., 47 (2020), 193–213. |
[28] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier: Amersterdam, 2006. |
[29] |
L. Akın, A new approach for the fractional integral operator in time scales with variable exponent Lebesgue spaces, Fractal Fract., 5 (2021), 7. https://doi.org/10.3390/fractalfract5010007 doi: 10.3390/fractalfract5010007
![]() |
[30] |
L. Akın, On the fractional maximal delta integral type inequalities on time scales, Fractal Fract., 4 (2020), 26. https://doi.org/10.3390/fractalfract4020026 doi: 10.3390/fractalfract4020026
![]() |
[31] |
L. Akın, New principles of non-linear integral inequalities on time scales, Appl. Math. Nonlinear Sci., 6 (2021), 1–8. https://doi.org/10.2478/amns.2021.1.00001 doi: 10.2478/amns.2021.1.00001
![]() |
[32] | A. Younus, M. Asif, J. Alzabut, A. Ghaffar, K. S. Nisar, A new approach to interval-valued inequalities, Adv. Differ. Equ., 319 (2020). https://doi.org/10.1186/s13662-020-02781-z |
[33] | M. M. Matar, A. A. Lubbad, J. Alzabut, On p-Laplacian boundary value problems involving Caputo-Katugampula fractional derivatives, Math. Method. Appl. Sci., 2020, https://doi.org/10.1002/mma.6534 |
[34] |
W. Sudsutad, N. Jarasthitikulchai, C. Thaiprayoon, J. Kongson, J. Alzabut, Novel generalized proportional fractional integral inequalities on probabilistic random variables and their applications, Mathematics, 10 (2022), 573. https://doi.org/10.3390/math10040573 doi: 10.3390/math10040573
![]() |
[35] | J. Alzabut, T. Abdeljawad, F. Jarad, W. Sudsutad, A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 101 (2019). https://doi.org/10.1186/s13660-019-2052-4 |
[36] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Gordon and Breach Science: Yverdon, 1993. |
[37] |
U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
![]() |
[38] |
F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
![]() |
[39] |
R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 6570. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[40] |
T. U. Khan, M. A. Khan, Generalized conformable fractional integral operators, J. Comput. Appl. Math., 346 (2018), 378–389. https://doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
![]() |
1. | Çetin Yıldız, Gauhar Rahman, Luminiţa-Ioana Cotîrlă, On Further Inequalities for Convex Functions via Generalized Weighted-Type Fractional Operators, 2023, 7, 2504-3110, 513, 10.3390/fractalfract7070513 |