In this paper, we establish some inequalities for convex functions by applying the generalized proportional fractional integral. Some new results by using the linkage between the proportional fractional integral and the Riemann-Liouville fractional integral are obtained. Moreover, we give special cases of our reported results. Obtained results provide generalizations for some of the current results in the literature by applying some special values to the parameters.
Citation: Majid K. Neamah, Alawiah Ibrahim. Generalized proportional fractional integral inequalities for convex functions[J]. AIMS Mathematics, 2021, 6(10): 10765-10777. doi: 10.3934/math.2021625
In this paper, we establish some inequalities for convex functions by applying the generalized proportional fractional integral. Some new results by using the linkage between the proportional fractional integral and the Riemann-Liouville fractional integral are obtained. Moreover, we give special cases of our reported results. Obtained results provide generalizations for some of the current results in the literature by applying some special values to the parameters.
[1] | P. L. Chebyshev, Sur les expressions approximatives des int égrales définies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98. |
[2] | Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev functional involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38–44. |
[3] | S. K. Ntouyas, P. Agarwal, J. Tariboon, On Pó lya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal., 10 (2016), 491–504. |
[4] | G. Pólya-Szegö, Aufgaben und Lehrsatze aus der Analysis, Band 1. Die Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 1925. |
[5] | S. S. Dragomir, N. T. Diamond, Integral inequalities of G${\rm{\ddot r}}$uss type via Pólya-Szegö and Shisha-Mond results, East Asian Math. J., 19 (2003), 27–39. |
[6] | Q. A. Ngo, D. D. Thang, T. T. Dat, D. A. Tuan, Notes on an integral inequality, J. Inequal. Pure Appl. Math., 7 (2006), 120. |
[7] | W. J. Liu, G. S. Cheng, C. C. Li, Further development of an open problem concerning an integral inequality, JIPAM J. Inequal. Pure Appl. Math., 9 (2008), 14. |
[8] | W. J. Liu, Q. A. Ngo, V. N. Huy, Several interesting integral inequalities, J. Math. Inequal., 3 (2009), 201–212. |
[9] | J. T. Machado, A. M Galhano, J. J. Trujillo, On development of fractional calculus during the last fifty years, Scientometrics, 98 (2014), 577–582. doi: 10.1007/s11192-013-1032-6 |
[10] | A. A. Kilbas, H. M. Sarivastava, J. J. Trujillo, Theory and application of fractional differential equation, North-Holland Mathematics Studies; Elsevier Sciences B.V.: Amsterdam, The Netherland, 2006. |
[11] | S. S. Redhwan, S. L. Shaikh, M. S. Abdo, Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type, AIMS Math., 5 (2020), 3714–3730. doi: 10.3934/math.2020240 |
[12] | A. Ekinci, M. E. Ozdemir, Some new integral inequalities via Riemann Liouville integral operators, Appl. Comput. Math., 3 (2019), 288–295. |
[13] | S. Y. Al-Mayyahi, M. S. Abdo, S. S. Redhwan, B. N. Abood, Boundary value problems for a coupled system of Hadamard-type fractional differential equations, IAENG Int. J. Appl. Math., 51 (2021), 1–10. |
[14] | S. S. Redhwan, S. L. Shaikh, M. S. Abdo, Some properties of Sadik transform and its applications of fractional-order dynamical systems in control theory, ATNAA, 4 (2019), 51–66. |
[15] | I. Podlubny, Fractional differential equations, Academic Press: London, UK, 1999. |
[16] | S. G. Samko, Fractional integrals and derivatives, theory and applications, Minsk; Nauka I Tekhnika, 1987. |
[17] | R. Hilfer, Applications of fractional calculus in physics, World Scientific: Singapore, 2000. |
[18] | M. A. Dokuyucu, Caputo and Atangana-Baleanu-Caputo fractional derivative applied to garden equation, Turkish J. Sci., 5 (2020), 1–7. |
[19] | M. Kunt, İ. İşcan, Fractional Hermite–Hadamard–Fejér type inequalities for GA-convex functions, Turkish J. Inequal., 2 (2018), 1–20. |
[20] | T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 78 (2017), 1–9. |
[21] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9 |
[22] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel Theory and application to heat transfer, Model. Thermal Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A |
[23] | M. Caputo, M. A. Fabrizio, New definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[24] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
[25] | F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7 |
[26] | Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497. |
[27] | G. Rahman, K. S. Nisar, S. Mubeen, J. Choi, Certain Inequalities involving the ($k$, $\rho $)-fractional integral operator, FJMS Far East J. Math. Sci., 103 (2018), 1879–1888. |
[28] | Z. Dahmani, L. Tabharit, On weighted Grüss type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31–38. |
[29] | E. Set, M. Tomar, M. Z. Sarikaya, On generalized Gr üss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34. |
[30] | K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, M. Arshad, Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl., 135 (2018), 1–12. |
[31] | K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, M. Arshad, Certain Gronwall type inequalities associated with Riemann–Liouville k- and Hadamard k-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249–263. |
[32] | A. O. Akdemir, S. I. Butt, M. Nadeem, M. A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Math., 9 (2021), 122. doi: 10.3390/math9020122 |
[33] | S. I. Butt, A. O. Akdemir, A. Ekinci, M. Nadeem, Inequalities of Chebyshev-Pólya-Szegö type via generalized proportional fractional integral operators, Miskolc Math. Notes, 21 (2020), 717–732. doi: 10.18514/MMN.2020.3363 |
[34] | K. S. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 245. doi: 10.1186/s13660-019-2197-1 |
[35] | F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Cébyśev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614. doi: 10.3390/sym10110614 |
[36] | G. Rahman, Z. Ullah, A. Khan, E. Set, K. S. Nisar, Certain Chebyshev type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019), 364. doi: 10.3390/math7040364 |
[37] | D. Nie, S. Rashid, A. O. Akdemir, D. Baleanu, J. B. Liu, On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications, Math., 7 (2019), 727. doi: 10.3390/math7080727 |
[38] | N. Ekinci, N. Eroğlu, New generalizations for convex functions via conformable fractional integrals, Filomat, 33 (2019), 4525–4534. doi: 10.2298/FIL1914525E |
[39] | M. E. Zdemir, A. Ekinci, A. O. Akdemir, Some new integral inequalities for functions whose derivatives of absolute values are convex and concave, TWMS J. Pure Appl. Math., 2 (2019), 212–224. |
[40] | E. Set, A. O. Akdemir, F. Ozata, Grüss type inequalities for fractional integral operator involving the extended generalized Mittag Leffler function, Appl. Comput. Math., 19 (2020), 402–414. |
[41] | J. Alzabut, T. Abdeljawad, F. Jarad, W. A. Sudsutad, Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019), 101. doi: 10.1186/s13660-019-2052-4 |
[42] | G. Rahman, A. Khan, T. Abdeljawad, K. S. Nisar, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Differ. Equ., 2019 (2019), 287. doi: 10.1186/s13662-019-2229-7 |
[43] | E. Set, S. I. Butt, A. O. Akdemir, A. Karaoğlan, T. Abdeljawad, New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Solitons Fractals, 143 (2021), 110554. doi: 10.1016/j.chaos.2020.110554 |
[44] | S. I. Butt, J. Pečarić, I. Perić, Refinement of integral inequalities for monotone functions, J. Inequal. Appl., 2012 (2012), 1–11. doi: 10.1186/1029-242X-2012-1 |
[45] | Z. Dahmani, New classes of integral inequalities of fractional order, Le Matematiche, 69 (2014), 237–247. |
[46] | C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some Inequalities of Hermite-Hadamard type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), 1–9. |
[47] | G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Grüss type for conformable k-fractional integral operators, RACSAM, Rev. R. ACAD. A, 9 (2020), 114. |
[48] | Z. A. Dahmani, A note on some new fractional results involving convex functions, Acta Math. Univ. Comenianae, 80 (2012), 241–246. |
[49] | G. Rahman, K. S. Nisar, T. Abdeljawad, Tempered fractional integral inequalities for convex functions, Math., 8 (2020), 500. doi: 10.3390/math8040500 |
[50] | C. Li, W. Deng, L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discret. Contin. Dyn. Syst. B, 24 (2019), 1989–2015. |
[51] | A. Fernandez, C. Ustaglu, On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math., 366 (2020), 112400. doi: 10.1016/j.cam.2019.112400 |